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Abstract. — Variational formulations for classical dissipative equations, namely friction and
diffusion equations, are given by means of fractional derivatives. In this way, the solutions of
those equations are exactly the extremal of some fractional Lagrangian actions. The formalism
used is a generalization of the fractional embedding developed by Cresson [“Fractional embedding
of differential operators and Lagrangian systems”, J. Math. Phys. 48, 033504 (2007)], where the
functional space has been split in two in order to take into account the asymmetry between left
and right fractional derivatives. Moreover, this asymmetric fractional embedding is compatible
with the least action principle and respects the physical causality principle.
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1. Introduction

Fractional differential equations may be used to describe various phenomena, for instance
in viscoelasticity [4], anomalous diffusion [25] notably in chaotic systems [35], or in phase
transitions [17]. Overviews on applications of fractional calculus may be found in the books
[18, 31]. In this paper, we are interested in two different problems where fractional differen-
tial equations arise: direct fractional generalization of classical differential equations and F.
Riewe’s [29, 30] approach to classical dissipative systems via fractional Lagrangian systems.

1.1. Direct fractional generalization of differential equations. — Most of fractional
equations are obtained from a classical equation, like the wave equation or the diffusion equa-
tion, by replacing the time derivative by a fractional derivative. As an example, we refer to
[33] and [34] for the introduction of the fractional wave equation and the fractional diffusion
equation respectively. However, the status of such ad-hoc generalizations is not so easy to
interpret. The main problem being that these generalizations are not stable under change of
variables. Precisely, if we denote by (E) a given differential equation in a coordinates system
x, we obtain under a change of variable y = h(x), where h is a C1-diffeomorphism, a new
equation denoted by (E’) whose flow ψt is related to the flow φt of (E) by the conjugacy
relation ψ = h ◦ φ ◦ h−1. However, if we perform a fractional generalization of (E) and (E’)
denoted by (Eα ) and (E′α) respectively and we denote by ψα

t and ψα
t the corresponding

flow, there exists in general no conjugacy relation between ψα
t and φα

t . As a consequence, the
meaning of this extension is not clear.

It is then important to derive fractional generalization of differential equations on a more
intrinsic (i.e. coordinates independent) way. The problem can be first studied for some equa-
tions possessing a specific structures like Lagrangian or Hamiltonian systems, or symmetries
properties. These properties are indeed intrinsic. An idea is then to base a generalization on
these structures dealing with fractional generalization of Lagrangian or Hamiltonian systems.

1.2. F. Riewe’s approach to dissipative dynamical systems. — For dissipative sys-
tems a classical result of P.S. Bauer [7] in 1931 stated that a linear set of differential equations
with constant coefficients cannot be derived from a variational principle. The main obstruc-
tion is precisely the dissipation of energy which induces a dynamic which is not reversible in
time. H. Bateman [6] pointed out that this obstruction is only valid if one understand that
the variational principle does not produce additional equations. In particular, H. Bateman
construct a complementary set of equations which enables him to find a variational formula-
tion. The main idea behind Bateman’s approach is that a dissipative system must be seen
as physically incomplete. An extension of Bateman’s construction has been recently given for
nonlinear evolution equations [16].

In this paper, we follow a different approach initiated by F. Riewe ([29],[30]) in 1996-1997.
He defined a fractional Lagrangian framework to deal with dissipative systems. Riewe’s theory
follows from a simple observation : ”If the Lagrangian contains terms proportional to

(
dnx
dtn

)2,
then the Euler-Lagrange equation will have a term proportional to d2nx

dt2n . Hence a frictional
force γ dx

dt should follow from a Lagrangian containing a term proportional to the fractional

derivative
(

dx1/2

dt1/2

)2
.” where the notation d1/2

dt1/2 represents formally an operator satisfying the

composition rule d1/2

dt1/2 ◦ d1/2

dt1/2 = d
dt . He then studied fractional Lagrangian functionals using

the left and right Riemann-Liouville fractional derivatives which satisfy the composition rule
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formula. A simple example of functional studied by Riewe is given by

L(x) =
∫ b

a
L(x, D1/2

+ x, D1/2
− x, dx/dt)dt,

where x : [a, b] → R and L :
{

R× R× R× R → R,
(x, v+, v−, v) 7−→ L(x, v+, v−, v).

He proved that critical

points x of this functional corresponds to the solutions of the generalized fractional Euler-
Lagrange equation

d

dt

(
∂L

∂v
(?1/2)

)
+ D1/2

−

(
∂L

∂v+
(?1/2)

)
∗ D1/2

+

(
∂L

∂v−
(?1/2)

)
=
∂L

∂x
(?1/2),

where ?1/2 = (x, D1/2
+ x, D1/2

− x, dx/dt). Riewe derived such a generalized Euler-Lagrange
equation for more general functionals depending on left and right Riemann-Liouville deriva-
tives Dα

− and Dα
+ with arbitrary α > 0 (see [29], equation (45) p. 1894). The main property

of this Euler-Lagrange equation is that the dependence of L with respect to D1/2
+ (resp. D1/2

− )
induces a derivation with respect to D1/2

− (resp. D1/2
+ ) in the equation. As a consequence,

we will always obtain mixed terms of the form D1/2
− ◦ D1/2

+ x or D1/2
+ ◦ D1/2

− x. For example,
if we consider the Lagrangian

L(x, v+, v−, v) =
1
2
mv2 − U(x) +

1
2
γv2

+,

we obtain as a generalized Euler-Lagrange equation

m
d2x

dt2
+ γD1/2

− ◦ D1/2
+ x+ U ′(x) = 0.

However, in general

D1/2
− ◦ D1/2

+ x 6= dx

dt
,

so that this theory can not be used in order to provide a variational principle for the linear
friction problem. This problem of the mixing between the left and right derivative in the
fractional calculus of variations is well known (see for example Agrawal [1]). It is due to the
integration by parts formula which is given for f and g in C0([a, b]) by∫ b

a
f(t).Dα

− g(t)dt =
∫ b

a
Dα

+ f(t).g(t)dt.

In ([29],p.1897) Riewe considered the limit a→ b while keeping a < b. He then approximated
Dα
− by Dα

+ . However, this approximation is not justified in general for a large class of function
so that Riewe’s derivation of a variational principle for the linear friction problem is not valid.

1.3. Abstract embedding of differential equations and Lagrangian systems. —
The two previous problems can be studied in the framework of embeddings initiated in [10]
and developed further in [8, 9, 14, 21]. In the following, we discuss arbitrary extension of
differential equations and Lagrangian systems. We specialize the discussion to the fractional
case in the next Subsection. An embedding is made of two parts :

- An algebraic part which formalizes the fact to replace a given time derivative by a general-
ized one denoted D in a given differential equation. The starting point for this generalization
is the differential operator O which depends on the classical derivative d/dt and its iterations
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related to the differential equation O(x) = 0. By using a new derivative D, we first extend
the operator O to a new one, ED(O) and obtain a new equation, ED(O)(x) = 0. The following
diagram sums up this procedure:

O(x) = 0

��

ED(O)(x) = 0

O
ED // ED(O)

OO
(1.1)

This algebraic manipulation is classical in analysis when one extends partial differential
equations to Schwartz’s distribution using the symbol of the underlying differential operator
(see for example [?]).

In the following, we are interested in Lagrangian systems defined by a Lagrangian L(x(t), d
dtx(t), t)

whose dynamics is given by a second order differential equation defined by

(EL) ∂1L

(
x(t),

d

dt
x(t), t

)
− d

dt
∂2L

(
x(t),

d

dt
x(t), t

)
= 0,

called the Euler-Lagrange equation. Equation (EL) plays the role of O(x) = 0 in diagram
(1.1), and leads to an embedded Euler-Lagrange equation, denoted by ED(EL).

- An analytic part consisting in extending Lagrangian functionals. As we previously said,
it is important to base a generalization not on the differential equation itself but on a more
intrinsic structure associated to this equation. In the case of Lagrangian systems, one can
prove that x is a solution of the Euler-Lagrange equation if and only if its is an extremal of
the functional

A(L) : x 7→
∫ b

a
L

(
x(t),

d

dt
x(t), t

)
dt,

called the action in classical mechanics. Such a variational principle is called the least-action
principle in classical mechanics. The underlying framework is the classical calculus of varia-
tions. Extremals are obtained looking for the variations of the functional over a particular set
denoted by V in the following.

Embedding the Lagrangian L also makes sense and provides a new function ED(L). We
can then define a generalized Lagrangian functional A(ED(L)) and develop the corresponding
calculus of variations over a set of variations denoted by VD. The characterization of the
extremals for such functionals leads to a generalized Euler-Lagrange equation denoted by
(EL)D. This procedure is illustrated by the following diagram:

LOO

V
��

ED // ED(L)
OO

VD
��

(EL) (EL)D

Using these two parts, one can discuss the previous problem to give a more intrinsic origin
to a generalized equation. As we have two different ways to generalized the classical Euler-
Lagrange equation, via the algebraic or analytic way, a natural question is the following : do
we have ED(EL) = (EL)D ?
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The problem can hence be summed up by the following diagram:

LOO

V
��

ED // ED(L)
OO

?VD
��

(EL)
ED // ED(EL)

(1.2)

A natural notion with respect to a given generalization associated to a fixed embedding is
then the following :

Definition 1 (Coherence). — The embedding ED is said to be coherent if diagram (1.2)
is valid, i.e. if the extremals of A(ED(L)) according to the variations set VD are exactly the
solutions of ED(EL).

1.4. A notion of fractional embedding. — In the fractional framework, D is chosen as
a fractional derivative of order α, with 0 < α < 1. Several definitions exist, and we refer to
[32, 19, 26, 28] for a detailed presentation of the fractional calculus.

Two types of fractional derivatives exist: the left and the right ones, which respectively
involve left and right values of the function. For instance, if Dαf(t) is a left fractional
derivative of order α of f , evaluated in t, it depends on f(τ), with τ < t.

If a differential equation has a physical content, it should only involve left derivatives.
Indeed, the state of a system at time t should be fixed by its past states at times τ , τ < t.
We also note that if we study the reversibility of a system, equations describing the backward
evolution should only contain right derivatives [13]. This motivates the following definition.

Definition 2 (Causality). — A fractional differential equation is said to be causal if it in-
volves fractional derivatives of a single type.

A fractional embedding Eα of Lagrangian systems has been presented in [8]. Similar dia-
grams to (1.2) have been obtained. However, they are neither coherent nor causal because of
the asymmetry of the formula for fractional integration by parts, which makes left and right
fractional derivatives appear. If no restrictions are done on variations, the Euler-Lagrange
equation derived from the embedded Lagrangian Eα(L) (denoted here by (EL)α) is different
from the embedded Euler-Lagrange equation Eα(EL) (see diagram (1.3)).

LOO

V
��

Eα // Eα(L)
OO

��
(EL)

Eα // Eα(EL) 6= (EL)α

(1.3)

It has also been shown that by restricting the space of variations (denoted here by Vα), the
solutions of Eα(EL) are some extremals of A(ED(L)).

Furthermore, in [8, 9], some classical dissipative equations, such as the linear friction equa-
tion

m
d2

dt2
x(t) + γ

d

dt
x(t)− U ′(x(t)) = 0, (1.4)

and the diffusion equation
∂

∂t
u(x, t) = c∆u(x, t) (1.5)
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have been identified with embedded Euler-Lagrange equations, with a fractional derivative
of order α = 1/2.

However, there is no equivalence between solutions of the differential equations and extremal
points: an extremal point may not be a solution of the differential equation (see diagram (1.6)).
Precisions have been given in [14], but they have not led to a strict equivalence.

LOO

V
��

Eα // Eα(L)
OO

Vα

(EL)
Eα // Eα(EL)

(1.6)

1.5. Main results. — In this article, we generalize the fractional embedding developed in
[8], by splitting in two the functional space of the trajectories. The aim is to take into account
the asymmetry between left and right fractional derivatives. Our main results are contained
in (Theorem 4 and Corollaries 3 and 4) which tell that this asymmetric fractional embedding
is both coherent and causal solving a classical problem in the fractional calculus of variations.

We then prove (see Theorems 7 and 8) that solutions of equations (1.4) and (1.5) are exactly
the extremal points of some asymmetric fractional embeddings of Lagrangian systems. The
key point is causality, which allows to see d/dt as D1/2◦D1/2. Other fractional Euler-Lagrange
equations have been presented in [29, 1, 5, 15]. However, they cannot provide a term in d/dt:
compositions of fractional derivatives are always between right and left ones.

This article continues with a brief presentation of Lagrangian systems in section 2. Then
the asymmetric fractional embedding, presented in Section 3, is proved to be coherent and
causal in Section 4. Generalizations, given in Section 5, provide some applications for classical
dissipative equations in Section 6. Those results are discussed in Section 7, while some proofs
are given in a last Section 8.

2. Lagrangian systems

First of all, we present some basic tools: some functional spaces, the calculus of variations
used here for the least action principle and a brief overview on Lagrangian systems.

2.1. Functional spaces. — For two sets A and B, we denote the vector space of functions
f : A → B by F(A,B) . Let a, b ∈ R, a < b. Let m,n ∈ N∗ and p ∈ N. Let U be an open
subset of Rm or the finite interval [a, b]. The vector space of functions U → Rn of class Cp is
denoted by Cp(U). If Ω is an open subset of Rm, we set

Cp(Ω× [a, b]) = { f ∈ F(Ω× [a, b]) | ∀ t ∈ [a, b], x 7→ f(x, t) ∈ Cp(Ω),
∀x ∈ Ω, t 7→ f(x, t) ∈ Cp([a, b]) } .

For p = 0, we introduce the following vector spaces:

C0
+([a, b]) = {f ∈ C0([a, b]) | f(a) = 0},

C0
−([a, b]) = {f ∈ C0([a, b]) | f(b) = 0},

and for p ≥ 1, we set

6



Cp
+([a, b]) = {f ∈ Cp([a, b]) | f (k)(a) = 0, 0 ≤ k ≤ p− 1},

Cp
−([a, b]) = {f ∈ Cp([a, b]) | f (k)(b) = 0, 0 ≤ k ≤ p− 1}.

Moreover, for all p ∈ N, the intersection of Cp
+([a, b]) and Cp

−([a, b]) is denoted by Cp
0 ([a, b]).

We also denote the set of absolutely continuous functions on [a, b] by AC([a, b]), and the set
of functions f which have continuous derivatives up to order (p− 1) with f (p−1) ∈ AC([a, b])
by ACp([a, b]) . The inclusion Cp([a, b]) ⊂ ACp([a, b]) is obvious.

2.2. Calculus of variations. — As mentioned above, we are interested in the extremals
of the Lagrangian action, according to specified variations. These are at the origin of the
following definitions, mainly taken from [3, 8].

Let A be a vector space, B a subspace of A, and f : A→ R a function.

Definition 3. — Let x ∈ A. The function f has a B-minimum (respectively B-maximum)
point at x if for all h ∈ B, f(x+ h) ≥ f(x) (respectively f(x+ h) ≤ f(x)).

The function f has a B-extremum point at x if it has a B-minimum point or a B-maximum
point at x.

Definition 4. — Let x ∈ A. The function f is B-differentiable at x if

f(x+ εh) = f(x) + εdf(x, h) + o(ε),

for all h ∈ B, ε > 0, where h 7→ df(x, h) is a linear function.

Definition 5. — Let x ∈ A. We suppose that f is B-differentiable at x. The point x is a
B-extremal for f if for all h ∈ B, df(x, h) = 0.

In the differentiable case, the classical necessary condition remains with those definitions.

Lemma 1. — Let x ∈ A. We suppose that f is B-differentiable at x. If f has a B-extremum
point at x ∈ A, then x is a B-extremal for f .

Proof. — We consider the case of a B-minimum.
Let h ∈ B. For all ε > 0, εh ∈ B, and f(x+ εh) ≥ f(x). Consequently, df(x, h) ≥ 0.

Moreover, for all ε > 0, −εh ∈ B, so f(x+ ε(−h)) = f(x− εh) ≥ f(x). Then df(x,−h) ≥ 0.
Since df(x,−h) = −df(x, h), we conclude that df(x, h) = 0.

Remark 1. — The converse is false. However, the misnomer “extremal” for definition 5 may
be explained by the fact that necessary condition df(x, h) = 0 is widely used for optimization
problems.

2.3. Lagrangian systems. — We give here a short presentation of classical Lagrangian
systems by using the previous definitions. By doing so, the understanding of the asymmetric
fractional embedding will be made easier. A detailed presentation of Lagrangian systems may
be found in [3, 2].

Lagrangian systems are totally determined by a single function, the Lagrangian. In this
article, we define a Lagrangian as follows.

7



Definition 6. — A Lagrangian is a function

L : R2n × [a, b] −→ R
(x, v, t) 7−→ L(x, v, t)

which verifies the following properties:
– L ∈ C1(R2n × [a, b]),
– ∀t ∈ [a, b], ∀x ∈ Rn, v 7→ L(x, v, t) ∈ C2(Rn).

From now on, we denote by ∂1L(x, v, t) and ∂2L(x, v, t) the differentials of L according
respectively to x and v. Hence ∂1L(x, v, t) and ∂2L(x, v, t) are Rn valued vectors.

A Lagrangian defines a functional on C1([a, b]), denoted by

A(L) : C1([a, b]) −→ R

x 7−→
∫ b

a
L

(
x(t),

d

dt
x(t), t

)
dt,

(2.1)

and called the Lagrangian action.
According to the least action principle, trajectories of the system are given by the extrema

of this action. Using lemma 1, we are interested in extremals for A(L).

Lemma 2. — Let L be a Lagrangian and x ∈ C1([a, b]).
We suppose that t 7→ ∂2L(x(t), d

dtx(t), t) ∈ AC([a, b]).
Then A(L) is C1

0 ([a, b])-differentiable at x and for all h ∈ C1
0 ([a, b]),

dA(L)(x, h) =
∫ b

a

[
∂1L

(
x(t),

d

dt
x(t), t

)
− d

dt
∂2L

(
x(t),

d

dt
x(t), t

)]
· h(t) dt.

Proof. — Let h ∈ C1
0 ([a, b]) and ε > 0. For all t ∈ [a, b],

L

(
x(t) + εh(t),

d

dt
x(t) + ε

d

dt
h(t), t

)
= L

(
x(t),

d

dt
x(t), t

)
+ ε

[
∂1L

(
x(t),

d

dt
x(t), t

)
· h(t) + ∂2L

(
x(t),

d

dt
x(t), t

)
· d
dt
h(t)

]
+ o(ε).

Hence we obtain

A(L)(x+ εh) =
∫ b

a
L

(
x(t) + εh(t),

d

dt
x(t) + ε

d

dt
h(t), t

)
dt

= A(L)(x) + ε

∫ b

a

[
∂1L

(
x(t),

d

dt
x(t), t

)
· h(t) + ∂2L

(
x(t),

d

dt
x(t), t

)
· d
dt
h(t)

]
dt+ o(ε).

Furthermore, since t 7→ ∂2L
(
x(t), d

dtx(t), t
)
∈ AC([a, b]), an integration by parts gives∫ b

a
∂2L

(
x(t),

d

dt
x(t), t

)
· d
dt
h(t) dt = −

∫ b

a

d

dt
∂2L

(
x(t),

d

dt
x(t), t

)
· h(t) dt.

No boundary term appears because h ∈ C1
0 ([a, b]).

Finally, h 7→
∫ b

a

[
∂1L

(
x(t),

d

dt
x(t), t

)
− d

dt
∂2L

(
x(t),

d

dt
x(t), t

)]
· h(t) dt is linear, which

concludes the proof.
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Hence we obtain the following characterization for the C1
0 ([a, b])-extremal.

Theorem 1. — Let L be a Lagrangian and x ∈ C1([a, b]).
We suppose that t 7→ ∂2L(x(t), d

dtx(t), t) ∈ AC([a, b]). Then we have the following equiva-
lence:
x is a C1

0 ([a, b])-extremal for A(L) if and only if x verifies the Euler-Lagrange equation

(EL) ∀t ∈ [a, b], ∂1L

(
x(t),

d

dt
x(t), t

)
− d

dt
∂2L

(
x(t),

d

dt
x(t), t

)
= 0. (2.2)

Proof. — From Lemma 2, x is a C1
0 ([a, b])-extremal forA(L) if and only if for all h ∈ C1

0 ([a, b]),∫ b

a

[
∂1L

(
x(t),

d

dt
x(t), t

)
− d

dt
∂2L

(
x(t),

d

dt
x(t), t

)]
· h(t) dt = 0.

We conclude by using the fundamental lemma in the calculus of variations [2, p.57].

3. Asymmetric fractional embedding

We begin with a brief presentation of the fractional operators which will be used in this
article. Then we present the asymmetric fractional embedding as in [8]: firstly for differential
operators and secondly for Lagrangian systems.

3.1. Fractional operators. —

3.1.1. Fractional integrals. — Let β > 0, and f, g : [a, b] → Rn.

Definition 7. — The left and right Riemann-Liouville fractional integrals are respectively
defined by

Iβ
+ f(t) =

1
Γ(β)

∫ t

a
(t− τ)β−1f(τ) dτ,

Iβ
− f(t) =

1
Γ(β)

∫ b

t
(τ − t)β−1f(τ) dτ,

for t ∈ [a, b], where Γ is the gamma function.

Lemma 3. — 1. If f ∈ AC([a, b]), then Iβ
+ f ∈ AC([a, b]) and Iβ

− f ∈ AC([a, b]).
2. If f ∈ C0([a, b]), then Iβ

+ f ∈ C0
+([a, b]) and Iβ

− f ∈ C0
−([a, b]).

Proof. — 1. We refer to Lemma 2.1 in [32, p.32].
2. We refer to Theorem 3.1 in [32, p.53], with λ = 0.

Composing those fractional integrals with the usual derivative lead to the following frac-
tional derivatives.
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3.1.2. Fractional derivatives. — Let α > 0. Let p ∈ N such that p− 1 ≤ α < p.

Definition 8. — The left and right Riemann-Liouville fractional derivatives are respectively
defined by

Dα
+ f(t) =

(
dp

dtp
◦ Ip−α

+

)
f(t)

=
1

Γ(p− α)
dp

dtp

∫ t

a
(t− τ)p−1−αf(τ) dτ,

Dα
− f(t) =

(
(−1)p d

p

dtp
◦ Ip−α

−

)
f(t)

=
(−1)p

Γ(p− α)
dp

dtp

∫ b

t
(τ − t)p−1−αf(τ) dτ,

for t ∈ [a, b].

If we change the order of composition, we obtain another definition.

Definition 9. — The left and right Caputo fractional derivatives are respectively defined by

cDα
+ f(t) =

(
Ip−α

+ ◦ dp

dtp

)
f(t)

=
1

Γ(p− α)

∫ t

a
(t− τ)p−1−αf (p)(τ) dτ,

cDα
− f(t) =

(
Ip−α
− ◦ (−1)p d

p

dtp

)
f(t)

=
(−1)p

Γ(p− α)

∫ b

t
(τ − t)p−1−αf (p)(τ) dτ,

for t ∈ [a, b].

The link between Riemann-Liouville and Caputo derivatives is given by Theorem 2.2 in
[32, p.39]:

Theorem 2. — For f ∈ ACp([a, b]), Dα
+ f exists almost everywhere, and for all t ∈ (a, b],

Dα
+ f(t) =

p−1∑
k=0

f (k)(a)
Γ(1 + k − α)

(t− a)k−α + cDα
+ f(t).

Lemma 3 and Theorem 2 directly provide the following results.

Lemma 4. — 1. If f ∈ Cp([a, b]), then cDα
+ f ∈ C0

+([a, b]).
2. If f ∈ Cp

+([a, b]), then Dα
+ f = cDα

+ f . In particular, Dα
+ f ∈ C0

+([a, b]).

Similar results hold for the right derivatives.
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3.2. Asymmetric fractional embedding of differential operators. — We adapt here
the presentation done in [8].

Let M,N ∈ N∗. If f ∈ F(RM+1,RN ) and y ∈ F([a, b],RM ), we denote by f(y(•), •) the
function defined by

f(y(•), •) : [a, b] −→ RN

t 7−→ f(y(t), t).

Let p, k ∈ N. If f = {fi}0≤i≤p and g = {gj}1≤j≤p are two families of F(Rn(k+1)+1,Rm)
(g = ∅ if p = 0), with fj ∈ C0(Rn(k+1)+1) and gj ∈ Cj(Rn(k+1)+1) for 1 ≤ j ≤ p, we introduce
the operator Og

f defined by

Og
f : Ck+p([a, b]) −→ F ([a, b],Rm)

x 7−→

[
f0 +

p∑
i=1

fi ?
di

dti
gi

] (
x(•), . . . , d

k

dtk
x(•), •

)
,

(3.1)

where, for two operators A = (A1, . . . , Am) and B = (B1, . . . , Bm), A ? B is defined by

(A ? B)(y) = (A1(y)B1(y), . . . , Am(y)Bm(y)) .

The fractional embedding presented in [8] consists in replacing d/dt by a fractional deriva-
tive. Here we want to keep this idea, but additionnaly we want to split in two the functional
space of the trajectories, in order to make the asymmetry between left and right fractional
derivatives explicitly appear.

Let 0 < α < 1. For X = (x+, x−) ∈ C1([a, b])2 (AC2([a, b])2 would be sufficient), we
introduce the fractional derivative cDα, defined by

cDαX =
(

cDα
+ x+,− cDα

− x−
)
.

The classical case is recovered for α→ 1− (and not for α = 1).

Lemma 5. — Let X ∈ C1([a, b])2. Then

∀ t ∈ (a, b), lim
α→1−

cDαX(t) =
d

dt
X(t).

Proof. — See Section 8.

Hence for k ∈ N∗ and a “suitable” function X,

( cDα)kX =
(
( cDα

+ )kx+, (− cDα
− )kx−

)
.

The following lemma provides an example of such “suitable” functions.

Lemma 6. — Let k ∈ N∗. If f ∈ Ck
+([a, b]), then we have(

cDα
+

)k
f = cDαk

+ f.

A similar result holds for the right derivative.

Proof. — See Section 8.

Consequently, if X = (x+, x−) ∈ Ck
+([a, b])× Ck

−([a, b]), ( cDα)kX verifies

( cDα)kX = ( cDαk
+ x+, (−1)k cDαk

− x−),

and ( cDα)kX ∈ C0
+([a, b])× C0

−([a, b]).
Let us now precise the splitting we are interested in.
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Definition 10. — Let k ∈ N and m,n ∈ N∗. Let f ∈ F(Rn(k+1)+1,Rm). The asymmetric
representation of f , denoted by f̃ , is defined by

f̃ : R2n(k+1)+1 −→ Rm

(x0, y0, . . . , xk, yk, t) 7−→ f(x0 + y0, . . . , xk + yk, t).

Actually, the relevant functions will be in F([a, b],Rn)×{0} or {0}×F([a, b],Rn). That is
why we introduce the following “selection” matrix.

Let Mm,2m(R) be the set of real matrices with m rows and 2m columns. We note Im the
identity matrix of dimension m, and we introduce the operator σ defined by

σ : F([a, b],Rm)2 −→ Mm,2m(R)
X 7−→ (Im 0) if X ∈ F([a, b],Rn)× {0} and X 6= 0,

(0 Im) if X ∈ {0} × F([a, b],Rn) and X 6= 0,
(0 0) otherwise.

Now we can define the asymmetric fractional embedding of a differential operator.

Definition 11. — With the previous notations, the asymmetric fractional embedding of op-
erator (3.1), denoted by Eα(Og

f ), is defined on a subset Eα ⊂ F([a, b],Rn)2, by

Eα(Og
f ) : Eα −→ F ([a, b],Rm)

X 7−→

[
f̃0 + σ(X)

p∑
i=1

(
f̃i ?Dαi

+ g̃i

f̃i ?(−1)iDαi
− g̃i

)](
X(•), . . . ,( cDα)kX(•), •

)
.

(3.2)

The definition set Eα of Eα(Og
f ) depends on f and g. We also introduce the following spaces:

Eα
+ = Eα ∩ (F([a, b],Rn)× {0}) , Eα

− = Eα ∩ ({0} × F([a, b],Rn)) .

In particular, for (x+, 0) ∈ Eα
+, (3.2) becomes

Eα(Og
f )(x+, 0)(t) =

[
f0 +

p∑
i=1

fi ? Dαi
+ gi

] (
x+(t), . . . , ( cDα

+ )kx+(t), t
)
,

and for (0, x−) ∈ Eα
−, we have

Eα(Og
f )(0, x−)(t) =

[
f0 +

p∑
i=1

fi ? (−1)iDαi
− gi

] (
x−(t), . . . , (− cDα

− )kx−(t), t
)
.

Remark 2. — There exists of course several ways to define a fractional embedding because
of the different definitions of fractional derivatives. As it will be seen later, with our choice,
the action of a fractional Lagrangian is well defined, we may obtain a coherent and causal
embedding, and the differential equations presented in Section 6 will have relevant solutions.

For the sake of clarity, we will often denote by x the integer which verifies x− 1 ≤ x < x,
where x ∈ R+. We also denote by x the integer which verifies x− 1 < x ≤ x.

Precisions on Eα
+ and Eα

− can be given thanks to the following lemma.

Lemma 7. — Let β > 0 and p ∈ N. If f ∈ Cβ+p
+ ([a, b]), then cDβ

+ f ∈ C
p
+([a, b]). A similar

result holds for the right derivative.

Proof. — See section 8.
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Corollary 1. — – If
∂gi

∂t
= 0 for all 1 ≤ i ≤ p, Cp+k

+ ([a, b])× Cp+k
− ([a, b]) ⊂ Eα, and for

all X ∈ Cp+k
+ ([a, b])× Cp+k

− ([a, b]), Eα(Og
f )(X) ∈ C0([a, b]).

– If p = 0 (g = ∅) and k = 1, C1([a, b])2 ⊂ Eα and for all X ∈ C1([a, b])2, Eα(O∅
f )(X) ∈

C0([a, b]).

Proof. — – Let X = (x+, x−) ∈ Cp+k
+ ([a, b])×Cp+k

− ([a, b]). For all 1 ≤ j ≤ k, ( cDα)jX =
( cDαj

+ x+, (−1)j cDαj
− x−) and ( cDα)jX ∈ Cp

+([a, b])×Cp
−([a, b]), from Lemmas 6 and 7.

If x+ 6= 0 and x− 6= 0, Eα(Og
f )(X) = f̃0

(
X(•), . . . ,( cDα)kX(•), •

)
∈ C0([a, b]).

If x− = 0, let 1 ≤ i ≤ p. Since gi is of class Ci, we have gi(x+) : t 7→ gi(x+(t), . . . , cDαk
+ x+(t), t) ∈

Ci([a, b]). Moreover, gi(x+)′(a) =
k∑

j=1

∂jgi(x+)(a) · x(j)
+ (a) +

∂gi(x+)
∂t

(a). Since
∂gi

∂t
= 0

and x(j)
+ (a) = 0 for all 1 ≤ j ≤ k, we obtain gi(x+)′(a) = 0. By induction, gi(x+)(l)(a) =

0 for all 1 ≤ l ≤ i. Hence gi(x+) ∈ Ci
+([a, b]), and from Lemma 4, Dαi

+ gi(x+) ∈ C0([a, b]).
We proceed likewise if x+ = 0.

– Let X ∈ C1([a, b])2. We have f̃0(X(•), cDαX(•), •) ∈ C0([a, b]) from Lemma 4, so
Eα(O∅

f )(X) = f̃0(X(•), cDαX(•), •) is well defined and is a function of C0([a, b]).

In order to clarify those notations, we give here a short example.

Example 1. — We set n = m = p = 1, k = 2, and we suppose that 0 < α < 1/2.
Let f0, f1, g1 : R3 × R −→ R be three functions defined by

f0(a, b, c, t) = c+ e−t cos b,
f1(a, b, c, t) = 1,
g1(a, b, c, t) = cos a.

The associated operator Og
f verifies

Og
f (x)(t) =

d2

dt2
x(t) + e−t cos

(
d

dt
x(t)

)
+
d

dt
cos(x(t)),

for x ∈ C2([a, b]) and t ∈ [a, b].
Moreover, for any (x+, x−) ∈ AC2([a, b])2, ( cDα)2(x+, x−) = ( cD2α

+ x+,
cD2α

− x−) as it will
be shown in Lemma 13. The asymmetric fractional embedding Eα(Og

f ) is hence given by

Eα(Og
f )(x+, x−)(t) = cD2α

+ x+(t) + cD2α
− x−(t) + e−t cos( cDα

+ x+(t)− cDα
− x−(t))

+σ(x+, x−)
(
Dα

+ cos(x+(t) + x−(t))
−Dα

− cos(x+(t) + x−(t))

)
.

For (x+, 0) ∈ AC2([a, b])× {0}, the fractional embedding becomes

Eα(Og
f )(x+, 0)(t) = cD2α

+ x+(t) + e−t cos( cDα
+ x+(t)) + Dα

+ cos(x+(t)),

and for (0, x−) ∈ {0} ×AC2([a, b]), we have

Eα(Og
f )(0, x−)(t) = cD2α

− x−(t) + e−t cos(− cDα
− x−(t))− Dα

− cos(x−(t)).
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The ordinary differential equations may be written by using operators Og
f . Following [8],

we consider the differential equations of the form

Og
f (x) = 0, x ∈ Cp+k([a, b]). (3.3)

Definition 12. — With the previous notations, the asymmetric fractional embedding of dif-
ferential equation (3.3) is defined by

Eα(Og
f )(X) = 0, X ∈ Eα. (3.4)

Consequently, if (x+, 0) ∈ Eα
+, (3.4) becomes[

f0 +
p∑

i=1

fi ? Dαi
+ gi

] (
x+(t), . . . , ( cDα

+ )kx+(t), t
)

= 0,

and for (0, x−) ∈ Eα
−, we obtain[

f0 +
p∑

i=1

fi ? (−1)iDαi
− gi

] (
x−(t), . . . , ( cDα

− )kx−(t), t
)

= 0.

We verify that for these two cases, the asymmetric fractional embedding respects causality,
in the sense of Definition 2.

This method is now applied to Lagrangian systems.

3.3. Asymmetric fractional embedding of Lagrangian systems. — Let 0 < α < 1.
Let L be a Lagrangian.

For X = (x1, x2) ∈ R2n, Y = (y1, y2) ∈ R2n, and t ∈ [a, b], the asymmetric representation
of L, denoted by L̃, verifies

L̃(X,Y, t) = L(x1 + x2, y1 + y2, t).

Given that
∂L

∂x1
(x1 + x2, y1 + y2, t) =

∂L

∂x2
(x1 + x2, y1 + y2, t) = ∂1L(x1 + x2, y1 + y2, t),

we deduce ∂1L̃(X,Y, t) = ∂1L(x1+x2, y1+y2, t). Similarly, we note ∂2L̃(X,Y, t) = ∂2L(x1+
x2, y1 + y2, t).

Theorem 3. — The asymmetric fractional embedding of (2.2) is defined by

Eα(EL) ∂1L̃(X(t), cDαX(t), t)− σ(X)
(
Dα

+ ∂2L̃(X(t), cDαX(t), t)
−Dα

− ∂2L̃(X(t), cDαX(t), t)

)
= 0. (3.5)

In particular, for (x+, 0) ∈ Eα
+, (3.5) becomes

Eα(EL)+ ∂1L(x+(t), cDα
+ x+(t), t)− Dα

+ ∂2L(x+(t), cDα
+ x+(t), t) = 0, (3.6)

and for (0, x−) ∈ Eα
−,

Eα(EL)− ∂1L(x−(t),− cDα
− x−(t), t) + Dα

− ∂2L(x−(t),− cDα
− x−(t), t) = 0. (3.7)

Proof. — Equation (2.2) may be written like (3.3) with k = 1, p = 1, f = {∂1L, 1} and
g = {−∂2L}. We conclude by using Definitions 11 and 12.
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On the other hand, the asymmetric fractional embedding of the Lagrangian L, which will
be noted Lα, verifies

Lα(X)(t) = L(x+(t) + x−(t), cDα
+ x+(t)− cDα

− x−(t), t),

for all (x+, x−) ∈ C1([a, b])2 and t ∈ [a, b].
The associated action (2.1) now becomes

A(Lα) : C1([a, b])2 −→ R

X 7−→
∫ b

a
L̃ (X(t), cDαX(t), t) dt.

Remark 3. — We see here the necessity to choose the Caputo derivative inside the functions.
If we had taken the Riemann-Liouville derivative, the action could be undefined even for regular

functions. For example, if L(x, v, t) =
1
2
v2 − U(x) and x+ ∈ C1([a, b]), with x+(a) 6= 0, we

would have

L(x+(t), Dα
+ x+(t), t) ∼

a

1
2

(
x+(a)

Γ(1− α)

)2

(t− a)−2α,

and A(Lα)(x+, 0) would not be defined for α ≥ 1/2.

The obtention of the differential of the action first requires a formula for integration by
parts with fractional derivatives.

Lemma 8. — Let β > 0. If f ∈ ACβ([a, b]) and g ∈ C
β

0 ([a, b]), then we have the following
formula for fractional integration by parts:∫ b

a
f(t) · cDβ

− g(t) dt =
∫ b

a
Dβ

+ f(t) · g(t) dt.

Similarly, we have: ∫ b

a
f(t) · cDβ

+ g(t) dt =
∫ b

a
Dβ
− f(t) · g(t) dt.

Proof. — See Section 8.

Lemma 9. — Let X ∈ C1([a, b])2. We suppose that ∂2L̃(X(•), cDαX(•), •) ∈ AC([a, b]).
Then A(Lα) is C1

0 ([a, b])2-differentiable at X and for all H = (h+, h−) ∈ C1
0 ([a, b])2,

dA(Lα)(X,H) =
∫ b

a

[
∂1L̃ (X(t), cDαX(t), t) + Dα

− ∂2L̃ (X(t), cDαX(t), t)
]
· h+(t) dt

+
∫ b

a

[
∂1L̃ (X(t), cDαX(t), t)− Dα

+ ∂2L̃ (X(t), cDαX(t), t)
]
· h−(t) dt.

Proof. — Let H = (h+, h−) ∈ C1
0 ([a, b])2 and ε > 0. For all t ∈ [a, b], we have:

L̃(X(t) + εH(t), cDαX(t) + ε cDαH(t), t) = L̃(X(t), cDαX(t), t)

+ ∂1L̃(X(t), cDαX(t), t) · (h+(t) + h−(t))

+ ∂2L̃(X(t), cDαX(t), t) · ( cDα
+ h+(t)− cDα

− h−(t)) + o(ε).
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Integrating this relation on [a, b] leads to:

A(Lα)(X + εH) = A(Lα)(X) + ε

∫ b

a
∂1L̃(X(t), cDαX(t), t) · (h+(t) + h−(t)) dt

+ ε

∫ b

a
∂2L̃(X(t), cDαX(t), t) · ( cDα

+ h+(t)− cDα
− h−(t)) dt+ o(ε).

Since ∂2L̃(X(•),DX(•), •) ∈ AC([a, b]), h+ ∈ C1
0 ([a, b]) and h− ∈ C1

0 ([a, b]), we can use
lemma 8:∫ b

a
∂2L̃(X(t), cDαX(t), t) · cDα

+ h+(t) dt =
∫ b

a
Dα
− ∂2L̃(X(t), cDαX(t), t) · h+(t) dt,

and ∫ b

a
∂2L̃(X(t), cDαX(t), t) · cDα

− h−(t) dt =
∫ b

a
Dα

+ ∂2L̃(X(t), cDαX(t), t) · h−(t) dt.

Finally, (h+, h−) 7→
∫ b

a

[
∂1L̃ (X(t), cDαX(t), t) + Dα

− ∂2L (X(t), cDαX(t), t)
]
· h+(t) dt +∫ b

a

[
∂1L̃ (X(t), cDαX(t), t)− Dα

+ ∂2L (X(t), cDαX(t), t)
]
· h−(t) dt is linear, which concludes

the proof.

Then we obtain a result similar to Theorem 1.

Theorem 4. — Let X ∈ C1([a, b])2. We suppose that ∂2L̃(X(•), cDαX(•), •) ∈ AC([a, b]).
Then we have the following equivalence:
X is a C1

0 ([a, b])2-extremal of the action A(Lα) if and only if it verifies

(ELα) ∀ t ∈ (a, b),
{
∂1L̃(X(t), cDαX(t), t) + Dα

− ∂2L̃(X(t), cDαX(t), t) = 0,
∂1L̃(X(t), cDαX(t), t)− Dα

+ ∂2L̃(X(t), cDαX(t), t) = 0.
(3.8)

Proof. — Similar to Theorem 1. The only difference is that Dα
− ∂2L̃(X(t), cDαX(t), t) and

Dα
+ ∂2L̃(X(t), cDαX(t), t) may not be continuous respectively in b and a.

Equation (3.8) is very restrictive since X must verify

(Dα
+ + Dα

− )∂2L̃(X(t), cDαX(t), t) = 0.

This condition may not be related to the dynamics of the system and seems too strong. For
instance, for α ∈ (1, 2), functions which fulfill (Dα

+ + Dα
− )f = 0 are given in [22] and are very

specific. By restricting the set of variations, equations more relevant will now be obtained.

4. Coherence and causality

We will see here the interest of the asymmetric fractional embedding.
Euler-Lagrange equations which have been obtained so far in [29, 1, 8, 15] involve both

left and right fractional derivatives. The following result provides a similar equation.
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Corollary 2. — Let x+ ∈ C1([a, b]). We suppose that ∂2L(x+(•), cDα
+ x+(•), •) ∈ AC([a, b]).

Then we have the following equivalence:
(x+, 0) is a C1

0 ([a, b])× {0}-extremal of the action A(Lα) if and only if x+ verifies

∂1L(x+(t), cDα
+ x+(t), t) + Dα

− ∂2L(x+(t), cDα
+ x+(t), t) = 0, (4.1)

for all t ∈ [a, b).

Such an equation is not causal because of the simultaneous presence of cDα
+ and Dα

− .
Moreover, regarding (3.6), this procedure is not coherent. Those problems are solved with the
following results.

Corollary 3. — Let x+ ∈ C1([a, b]). We suppose that ∂2L(x+(•), cDα
+ x+(•), •) ∈ AC([a, b]).

Then we have the following equivalence:
(x+, 0) is a {0} × C1

0 ([a, b])-extremal of the action A(Lα) if and only if x+ verifies

(ELα)+ ∀ t ∈ (a, b], ∂1L(x+(t), cDα
+ x+(t), t)− Dα

+ ∂2L(x+(t), cDα
+ x+(t), t) = 0. (4.2)

Corollary 4. — Let x− ∈ C1([a, b]). We suppose that ∂2L(x−(•), cDα
− x−(•), •) ∈ AC([a, b]).

Then we have the following equivalence:
(0, x−) is a C1

0 ([a, b])× {0}-extremal of the action A(Lα) if and only if x− verifies

(ELα)− ∀ t ∈ [a, b), ∂1L(x−(t), cDα
− x−(t), t)− Dα

− ∂2L(x−(t), cDα
− x−(t), t) = 0. (4.3)

Equations (4.2) and (4.3) are causal. Moreover, they are respectively similar to (3.6) and
(3.7): (ELα)± ≡ Eα(EL)±. With such sets of variations, the asymmetric fractional embed-
ding is therefore coherent. To sum up, if we note E±α the asymmetric fractional embeddings
evaluated on trajectories in Eα

±, the following diagrams are valid:

LOO

C1
0 ([a,b])

��

E+
α // LαOO

{0}×C1
0 ([a,b])

��
(EL)

E+
α // Eα(EL)+

LOO

C1
0 ([a,b])

��

E−α // LαOO

C1
0 ([a,b])×{0}

��
(EL)

E−α // Eα(EL)−
A discussion on the link between causality and the least action principle through this

formalism is proposed in [13]. In particular, for trajectories in Eα
+, we may say that choosing

the variations in Eα
− is not in contradiction with the causality principle, since they do not

have a real physical meaning. From a physical point of view, while the trajectories may be
qualified as “real”, the variations remain only “virtual”.

Now we apply the asymmetric fractional embedding on Lagrangian systems with more
variables, in order to deal with equations such as (1.4) and (1.5).

5. Generalizations

5.1. Derivatives of higher orders. — Let α ∈ (0, 1) and k ≥ 2. We consider here
generalized Lagrangian systems which involve derivatives up to order k.

Definition 13. — An extended Lagrangian is a function

L : Rn(k+1) × [a, b] −→ R
(y0, y1, . . . , yk, t) 7−→ L(y0, y1, . . . , yk, t),

which verifies the following properties:
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– L ∈ C1(Rn(k+1) × [a, b]),
– ∀ 1 ≤ i ≤ k, ∂i+1L ∈ Ci(Rn(k+1) × [a, b]).

The action is now defined by

A(L) : Ck([a, b]) −→ R

x 7−→
∫ b

a
L

(
x(t),

d

dt
x(t), . . . ,

dk

dtk
x(t), t

)
dt.

Similar results to Section 2.3 hold for those Lagrangians.

Lemma 10. — Let L be an extended Lagrangian and x ∈ Ck([a, b]).
We suppose that for all 1 ≤ i ≤ k, ∂i+1L

(
x(•), d

dtx(•), . . . ,
dk

dtk
x(•), •

)
∈ ACi([a, b]).

Then A(L) is Ck
0 ([a, b])-differentiable at x and for all h ∈ Ck

0 ([a, b]),

dA(L)(x, h) =
∫ b

a

[
∂1L+

k∑
i=1

(−1)i d
i

dti
∂i+1L

] (
x(t), . . . ,

dk

dtk
x(t), t

)
dt.

Lemma 11. — Let L be an extended Lagrangian and x ∈ Ck([a, b]).
We suppose that for all 1 ≤ i ≤ k, ∂i+1L

(
x(•), d

dtx(•), . . . ,
dk

dtk
x(•), •

)
∈ ACi([a, b]).

Then we have the following equivalence:
x is a Ck

0 ([a, b])-extremal for A(L) if and only if x verifies the Euler-Lagrange equation

(ELk) ∀t ∈ [a, b],

[
∂1L+

k∑
i=1

(−1)i d
i

dti
∂i+1L

] (
x(t), . . . ,

dk

dtk
x(t), t

)
= 0. (5.1)

Concerning the asymmetric fractional embedding, we start with the embedding of the Euler-
Lagrange equation.

The asymmetric fractional embedding of (5.1) is given by:

Eα(ELk)

[
∂1L̃+ σ(X)

k∑
i=1

(
(−1)iDαi

+ ∂i+1L̃

Dαi
− ∂i+1L̃

)] (
X(t), . . . , ( cDα)kX(t), t

)
= 0.

In particular, for (x+, 0), we have

Eα(ELk)+

[
∂1L+

k∑
i=1

(−1)iDαi
+ ∂i+1L

] (
x+(t), . . . , ( cDα

+ )kx+(t), t
)

= 0, (5.2)

and for (0, x−),

Eα(ELk)−

[
∂1L+

k∑
i=1

Dαi
− ∂i+1L

] (
x−(t), . . . , (− cDα

− )kx−(t), t
)

= 0. (5.3)

Now we consider the embedding of the extended Lagrangian. First we need to set a vector
space for the trajectories, suitable for the calculus of variations. Let Fα

k be the functional
space defined by

Fα,k([a, b]) =
{
X ∈ C0([a, b])2 | ∀ 1 ≤ i ≤ k, ( cDα)iX ∈ C0([a, b])2

}
.

We also introduce

Fα,k
+ ([a, b]) = Fα,k([a, b]) ∩ (F([a, b],Rn)× {0}) ,
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Fα,k
− ([a, b]) = Fα,k([a, b]) ∩ ({0} × F([a, b],Rn)) .

The asymmetric fractional embedding of L, still denoted by Lα, is given by

Lα(X)(t) = L̃(X(t), . . . , ( cDα)kX(t), t)

= L(x+(t) + x−(t), . . . , ( cDα
+ )kx+(t) + (− cDα

− )kx−(t), t),

for all X = (x+, x−) ∈ Fα,k([a, b]) and t ∈ [a, b].
The associated action is now given by

A(Lα) : Fα,k([a, b]) −→ R

X 7−→
∫ b

a
L̃

(
X(t), cDαX(t), . . . , ( cDα)kX(t), t

)
dt.

The variations should be of course in Fα,k([a, b]) and should be suitable for the integration
by parts. The space Ck

0 ([a, b]) is suitable (but may not be optimal). In particular, Ck
0 ([a, b]) ⊂

Fα,k([a, b]) from Lemmas 6 and 4.
The differential of the action is given by the following result.

Lemma 12. — Let L be an extended Lagrangian and X ∈ Fα,k([a, b]).
We suppose that for all 1 ≤ i ≤ k, ∂i+1L̃(X(•), . . . , ( cDα)kX(•), •) ∈ ACαi([a, b]).
Then A(Lα) is Ck

0 ([a, b])2-differentiable at X and for all H = (h+, h−) ∈ Ck
0 ([a, b])2,

dA(Lα)(X,H) =
∫ b

a

[
∂1L̃+

k∑
i=1

Dαi
− ∂i+1L̃

](
X(t), . . . , ( cDα)kX(t), t

)
· h+(t) dt

+
∫ b

a

[
∂1L̃+

k∑
i=1

(−1)iDαi
+ ∂i+1L̃

](
X(t), . . . , ( cDα)kX(t), t

)
· h−(t) dt.

Proof. — Let H = (h+, h−) ∈ Ck
0 ([a, b])2 and ε > 0. Similarly to Lemma 9, we have:

A(Lα)(X + εH) = A(Lα)(X) + ε

∫ b

a
∂1L̃(X(t), . . . , ( cDα)kX(t), t) · (h+(t) + h−(t)) dt

+ ε

∫ b

a

k∑
i=1

∂i+1L̃(X(t), . . . , ( cDα)kX(t), t) ·
(
( cDα

+ )ih+(t) + (− cDα
− )ih−(t)

)
dt+ o(ε).

Let 1 ≤ i ≤ k. Since h+ ∈ Ci
0([a, b]), it verifies ( cDα

+ )ih+ = cDαi
+ , from Lemma 6. By

using Lemma 8, we have:

∫ b

a
∂i+1L̃(. . .) · cDαi

+ h+(t) dt =
∫ b

a
Dαi
− ∂i+1L̃(. . .) · h+(t) dt.
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A similar relation holds for h−. Hence we obtain

A(Lα)(X + εH) = A(Lα)(X)

+ ε

∫ b

a

[
∂1L̃+

k∑
i=1

Dαi
− ∂i+1L̃

](
X(t), . . . , ( cDα)kX(t), t

)
· h+(t) dt

+ ε

∫ b

a

[
∂1L̃+

k∑
i=1

(−1)iDαi
+ ∂i+1L̃

](
X(t), . . . , ( cDα)kX(t), t

)
· h−(t) dt+ o(ε).

The terms in h+ and h− are linear, which concludes the proof.

We may still obtain coherent and causal embeddings, thanks to the following equivalences.

Theorem 5. — Let (x+, 0) ∈ Fα,k
+ ([a, b]).

We suppose that for all 1 ≤ i ≤ k, ∂i+1L(x+(•), . . . , ( cDα
+ )kx+(•), •) ∈ ACαi([a, b]).

Then we have the following equivalence:
(x+, 0) is a {0} × Ck

0 ([a, b])-extremal of the action A(Lα) if and only if x+ verifies

(ELk,α)+ ∀t ∈ (a, b],

[
∂1L+

k∑
i=1

(−1)iDαi
+ ∂i+1L

] (
x+(t), . . . , ( cDα

+ )kx+(t), t
)

= 0.

(5.4)

Let (0, x−) ∈ Fα,k
− ([a, b]).

We suppose that for all 1 ≤ i ≤ k, ∂i+1L(x−(•), . . . , (− cDα
− )kx−(•), •) ∈ ACαi([a, b]).

Then we have the following equivalence:
(0, x−) is a Ck

0 ([a, b])× {0}-extremal of the action A(Lα) if and only if x− verifies

(ELk,α)− ∀t ∈ [a, b),

[
∂1L+

k∑
i=1

Dαi
− ∂i+1L

] (
x−(t), . . . , (− cDα

− )kx−(t), t
)

= 0. (5.5)

Proof. — From Theorem 1.2.4 of [20], the fundamental lemma in the calculus of variations is
still valid for variations in C∞0 ([a, b]). Since C∞0 ([a, b]) ⊂ Ck

0 ([a, b]), the result is proved.

Equations (5.4) and (5.5) are once again similar to (5.2) and (5.3): (ELk,α)± ≡ Eα(ELk)±.
The following diagrams are thus valid:

LOO

Ck
0 ([a,b])

��

E+
α // LαOO

{0}×Ck
0 ([a,b])

��
(ELk)

E+
α // Eα(ELk)+

LOO

Ck
0 ([a,b])

��

E−α // LαOO

Ck
0 ([a,b])×{0}

��
(ELk)

E−α // Eα(ELk)−

5.2. Continuous Lagrangian systems. — For the sake of simplicity, we do not generalize
the fractional embedding for continuous Lagrangians, but the ideas would be the same. More
details can be found in [8]. We only give a result which will be useful for the applications in
the next section.

Let Ω be an open and regular subset of Rn. We are no more interested by the evolution of
a trajectory x(t) ∈ Rn, but by the evolution of a field u(x, t) ∈ R, with (x, t) ∈ Ω× [a, b].
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Hence we are interested by generalized Lagrangians of the form

L : R× Rn × R× Rn × R −→ R
(u, v, w, x, t) 7−→ L(u, v, w, x, t).

In the classical case, the evaluation of this Lagrangian on a field u(x, t) is

L(u(x, t),∇u(x, t), ∂tu(x, t), x, t),

with x ∈ Ω and t ∈ [a, b]. The notation ∇u(x, t) ∈ Rn is the gradient of x 7→ u(x, t) and
∂tu(x, t) ∈ R the partial derivative of u according to t.

For such a Lagrangian, we define its asymmetric representation as

L̃ : R2 × R2n × R2 × Rn × R −→ R
(u1, u2, v1, v2, w1, w2, x, t) 7−→ L(u1 + u2, v1 + v2, w1 + w2, x, t).

We set Cp
0 (Ω) = {f ∈ Cp(Ω) | f = 0 on ∂Ω} and

V α(Ω× [a, b]) =
{
h ∈ C1(Ω× [a, b]) | ∀t ∈ [a, b], x 7→ h(x, t) ∈ C0

0 (Ω),

∀x ∈ Ω, h(x, a) = h(x, b) = 0 } .

Here the fractional derivatives are seen as partial fractional derivatives according to t. For
instance, we note cDα

+ u(x, t) = cDα
+ ux(t), where ux : t 7→ u(x, t). Similarly, for U =

(u+, u−), we note cDαU(x, t) = ( cDα
+ u+(x, t),− cDα

− u−(x, t)).
The action is now defined by

A(Lα) : C1(Ω× [a, b])2 −→ R

U 7−→
∫ b

a

∫
Ω
L̃ (U(x, t),∇U(x, t), cDαU(x, t), x, t) dx dt.

For a generalized Lagrangian L(u, v, w, x, t), we note in this section ∂uL, ∂viL and ∂w the
partial derivatives of L according to its first, i+ 1-th and n+ 2-th variables.

Once again, we may obtain a causal Euler-Lagrange equation.

Theorem 6. — Let u+ ∈ C1(Ω× [a, b]).
We suppose that

– ∀x ∈ Ω, t 7→ ∂wL(u+(x, t),∇u+(x, t), cDα
+ u+(x, t), x, t) ∈ AC([a, b]),

– ∀ 1 ≤ i ≤ n, ∀ t ∈ [a, b], x 7→ ∂viL(u+(x, t),∇u+(x, t), cDα
+ u+(x, t), x, t) ∈ C1(Ω).

Then we have the following equivalence:
(u+, 0) is a {0} × V α(Ω× [a, b])-extremal of the action A(Lα) if and only if u+ verifies[

∂uL−
n∑

i=1

∂xi∂viL− Dα
+ ∂wL

]
(u+(x, t),∇u+(x, t), cDα

+ u+(x, t), x, t) = 0,

for all x ∈ Ω, t ∈ (a, b].

Theorems 5 and 6 will now be used to associate variational formulations to equations (1.4)
and (1.5).
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6. Applications

6.1. Linear friction. — The differential equation of linear friction is

m
d2

dt2
x(t) + γ

d

dt
x(t)−∇U(x(t)) = 0, (6.1)

where t ∈ [a, b], m, γ > 0 and U ∈ C1(Rn).
Even if U(x) is quadratic, it has been shown in [7] that this equation cannot be derived

from a variational principle with classical derivatives. But this can be done by using fractional

derivatives, since
d

dt
= cD1/2

+ ◦ cD1/2
+ , which is proved in the following lemma.

Lemma 13. — If f ∈ AC2([a, b]), we have:
– if 0 < α < 1/2, cDα

+ ◦ cDα
+ f = cD2α

+ f ,
– if α = 1/2, cD1/2

+ ◦ cD1/2
+ f = f ′,

– if 1/2 < α < 1, for all t ∈ (a, b], cDα
+ ◦ cDα

+ f(t) = cD2α
+ f(t) +

f ′(a)
Γ(2− 2α)

(t− a)1−2α.

Proof. — See Section 8.

We consider the function L(x, v, w, t) =
m

2
w2 − γ

2
v2 − U(x), which is an extended La-

grangian.
The variations should be chosen in C2

0 ([a, b]), but the space

AC2
0 ([a, b]) = {f ∈ AC2([a, b]) | f(a) = f(b) = 0}

is actually sufficient.

Theorem 7. — Let x ∈ C2([a, b]). Then x is solution of (6.1) if and only if (x, 0) is a
{0} ×AC2

0 ([a, b])-extremal of the action A(L1/2).

Proof. — From Lemma 13 and its proof, cD1/2
+ ◦ cD1/2

+ x(t) = D1/2
+ ◦ cD1/2

+ x(t) =
d

dt
x(t),

for all t ∈ [a, b]. Hence L(x(•), cD1/2
+ x(•), x′(•), •) ∈ C0([a, b]) and the action A(L1/2) is well

defined.
Let t ∈ [a, b]. The partial derivatives of L verify:

– ∂1L(x(t), cD1/2
+ x(t), x′(t), t) = −∇U(x(t)),

– ∂2L(x(t), cD1/2
+ x(t), x′(t), t) = −γ cD1/2

+ x(t),
– ∂3L(x(t), cD1/2

+ x(t), x′(t), t) = mx′(t).

Since x′ ∈ AC([a, b]), cD1/2
+ x = I1/2

+ x′ ∈ AC([a, b]), from Lemma 3. Consequently, for
all 1 ≤ i ≤ 2, ∂i+1L(x(•), cD1/2

+ x(•), x′(•), •) ∈ ACαi([a, b]). Conditions of application of
Theorem 5 are hence fulfilled. Since C∞0 ([a, b]) ⊂ AC2

0 ([a, b]), the choice of {0} × AC2
0 ([a, b])

for the variations is valid and Theorem 5 may be applied:
(x, 0) is a {0} ×AC2

0 ([a, b])-extremal of the action A(L1/2) if and only if x verifies[
∂1L− D1/2

+ ∂2L+ D1
+ ∂3L

]
(x(t), cD1/2

+ x(t), x′(t), t) = 0. (6.2)

Given that D1
+ x

′(t) = x′′(t), (6.2) is exactly (6.1).
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We see here the necessity of having a causal Euler-Lagrange equation. Indeed, an equation

similar to (4.1) would have provide Dα
− ◦ cDα

+ which is never equal to
d

dt
.

Furthermore, the choice of ( cDα)k instead of cDαk in the asymmetric fractional embedding
is justified here. If we had taken cDαk , the evaluation of the Lagrangian in this example would
have been L(x(t), cD1/2

+ x(t), x′(t)− x′(a), t), since cD1
+ x(t) = x′(t)− x′(a). Hence the initial

condition x′(a) = 0 should have been added to obtain (6.1), which is too restrictive for the
solutions of (6.1).

6.2. Diffusion equation. — We are now interested in the diffusion equation
∂

∂t
u(x, t) = c∆u(x, t), (6.3)

where t ∈ [a, b], x ∈ Ω, c > 0, and ∆ is the Laplace operator.

We consider the generalized Lagrangian L(u, v, w, x, t) =
1
2
w2 − c

2
v2.

Theorem 8. — Let u ∈ F(Ω× [a, b],R) such that
– ∀x ∈ Ω, t 7→ u(x, t) ∈ AC2([a, b]),
– ∀t ∈ [a, b], x 7→ u(x, t) ∈ C2(Ω).
Then u is solution of (6.3) if and only if (u, 0) is a {0} × V α(Ω × [a, b])-extremal of the

action A(L1/2).

Proof. — Let x ∈ Ω and t ∈ [a, b]. The partial derivatives of L verify:

– ∂wL(u(x, t),∇u(x, t), cD1/2
+ u(x, t), x, t) = cD1/2

+ u(x, t),
– ∀1 ≤ i ≤ n, ∂viL(u(x, t),∇u(x, t), cD1/2

+ u(x, t), x, t) = −c ∂xiu(x, t),
so conditions of Theorem 6 are fulfilled, and we have:

(u, 0) is a {0} × V α(Ω× [a, b])-extremal of the action A(L1/2) if and only if u verifies[
∂uL−

n∑
i=1

∂xi∂viL− D1/2
+ ∂wL

]
(u(x, t),∇u(x, t), cD1/2

+ u(x, t), x, t) = 0. (6.4)

Given that
n∑

i=1

∂xi∂xiu(x, t) = ∆u(x, t) and D1/2
+ ◦ cD1/2

+ u(x, t) =
∂

∂t
u(x, t), (6.4) is exactly

(6.3).

Once again, causality is essential so as to obtain the term
∂

∂t
u(x, t).

7. Conclusion

In this article we have proposed an asymmetric fractional embedding, which turns out to be
coherent and causal. Such an embedding provides a strong variational structure for friction
and diffusion equations, in the sense that solutions of those two equations are exactly the
extremal of some functionals.

Furthermore, a rigorous treatment of the fractional operators has been carried out all along
the article, even if some classes of functions may not be optimal. In particular, it has been
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suggested that the Caputo derivative could be preferred to the Riemann-Liouville derivative
for the definition of the fractional Lagrangian action.

Concerning the dimensional homogeneity of fractional derivatives and equations, the asym-
metric fractional embedding is compatible with the homogeneous fractional embedding pre-
sented in [21]. For instance, if τ is the extrinsic constant of time, the use of τα−1Dα instead
of Dα for all the four fractional derivatives provides fractional differential equations which are
homogeneous in time.

We have the following list of open problems and perspectives :

– One must develop the critical point theory associated to our fractional functionals in
order to provide results about existence and regularity of solutions for these PDEs.

– Our paper solve the inverse problem of the fractional calculus of variations for some
classical or fractional PDEs (classical or fractional diffusion equation, fractional wave
equation, convection-diffusion (see [11]). However, we have no characterization of PDEs
admitting a fractional variational formulation in our setting. In the classical case, the
Lie approach to ODEs or PDEs as exposed for example in [27] provides a necessary
criteria known as Helmholtz’s conditions (see [27],p.). A natural idea is to look for the
corresponding theory in our case.

– There exists suitable numerical algorithms to study classical Lagrangian systems called
variational integrators which are developed for example in [23], [24]. The basic idea
of a variational integrator is to preserve this variational structure at the discrete level.
A natural extension of our work is then to develop variational integrators adapted to
our fractional Lagrangian functionals. A first step in this direction has been done in
[12] by introducing the notion of discrete embedding of Lagrangian systems. However,
this work does not cover continuous fractional Lagrangian systems and uses only classi-
cal discretization of the Riemann-Liouville or Caputo derivative by classical Grünwald-
Leitnikov expansions. However for classical functionals we have extended this point
of view to finite-elements and finite-volumes methods [?]. We will discuss the case of
continuous fractional Lagrangian systems in a forthcoming paper.

Of course of all these problems are far from being solved for the moment. However, it proves
that fractional calculus can be useful in a number of classical problems of Analysis and in
particular for PDEs where classical methods do not provide efficient tools.

8. Proofs

For x > 0 the integers x and x are defined by x − 1 ≤ x < x and x − 1 < x ≤ x. A
preliminary lemma will be useful for the following ones.

Lemma 14. — Let β > 0 and p ∈ N∗. If f ∈ Cp
+([a, b]), then

dp

dtp
◦ Iβ

+ f = Iβ
+ ◦ dp

dtp
f .
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Proof. — We prove it by induction. For p = 1 and f ∈ C1
+([a, b]),

d

dt
Iβ

+ f(t) =
(t− a)β−1

Γ(β)
f(a) +

1
Γ(β)

∫ t

a
(t− τ)β−1f ′(τ) dτ

= Iβ
+ f

′(t),

since f(a) = 0.
Now let p ∈ N∗ and f ∈ Cp+1

+ ([a, b]). Since f ′ ∈ Cp
+([a, b]), we may apply the induction

hypothesis:
dp

dtp
◦ Iβ

+ f
′ = Iβ

+ ◦ dp

dtp
f ′. (8.1)

From case p = 1, Iβ
+ f

′ =
d

dt
Iβ

+ f . Hence (8.1) becomes

dp+1

dtp+1
◦ Iβ

+ f = Iβ
+ ◦ dp+1

dtp+1
f,

which concludes the proof.

8.1. Lemma 5. —

Proof. — Let X = (x+, x−) ∈ C1([a, b])2. Since x′+ ∈ C0([a, b]), all points of (a, b) are
Lebesgue points of x′. We may then apply Theorem 2.7 of [32, p.51]:

∀ t ∈ (a, b), lim
α→1−

I1−α
+ x′(t) = x′(t).

We proceed likewise for x−.

8.2. Lemma 6. —

Proof. — We prove it by induction on k. For k = 1, the result is obvious. Now, let k ∈ N∗ and
f ∈ Ck+1

+ ([a, b]). Since f ∈ Ck
+([a, b]), we use the induction hypothesis: ( cDα

+ )kf = cDαk
+ f =

Iαk−αk
+ f (αk). We have αk ≤ k, so f (αk) ∈ AC([a, b]), and from Lemma 3, ( cDα

+ )kf ∈
AC([a, b]). Moreover, from Lemma 4, ( cDα

+ )kf(a) = 0. We may then apply Theorem 2:

Dα
+ ◦ ( cDα

+ )kf = cDα
+ ◦ ( cDα

+ )kf = ( cDα
+ )k+1f.

On the other hand, Dα
+ ◦ ( cDα

+ )kf =
d

dt
◦ I1−α

+ ◦ Iαk−αk
+ f (αk). We have f (αk) ∈ C0([a, b]),

so we may use formula 2.21 of [32, p.34]:

I1−α
+ ◦ Iαk−αk

+ f (αk) = Iβ
+ f

(αk),

where β = 1 + αk − α(k + 1).
Since f (αk) ∈ C1

+([a, b]), from Lemma 14,
d

dt
◦ Iβ

+ f
(αk) = Iβ

+ f
(αk+1).

We have αk + 1 ∈ {α(k + 1), α(k + 1) + 1}, so we consider two cases.
– If αk + 1 = α(k + 1), then

Dα
+ ◦ ( cDα

+ )kf = Iα(k+1)−α(k+1)
+ f (α(k+1)),

= cDα(k+1)
+ f.
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– If αk = α(k + 1), then

Dα
+ ◦ ( cDα

+ )kf = I1+α(k+1)−α(k+1)
+ f (α(k+1)+1),

= Iα(k+1)−α(k+1)
+ ◦ I1

+ f
(α(k+1)+1).

We have I1
+ f

(α(k+1)+1)(t) = f (α(k+1))(t)−f (α(k+1))(a). But α(k + 1) ≤ k, so f (α(k+1))(a) =
0.

Consequently,

Dα
+ ◦ ( cDα

+ )kf = Iα(k+1)−α(k+1)
+ f (α(k+1)),

= cDα(k+1)
+ f.

In both cases, we have proved that ( cDα
+ )k+1f = cDα(k+1)

+ f , which concludes the proof.

8.3. Lemma 7. —

Proof. — If β ∈ N∗, cDβ
+ f(t) = f (β)(t)−f (β)(a), and cDβ

+ f ∈ C
p
+([a, b]). Else, let 1 ≤ k ≤ p.

Since f (β) ∈ Ck
+([a, b]), from Lemma 14,

dk

dtk
cDβ

+ f =
dk

dtk
Iβ−β

+ f (β)

= Iβ−β
+ f (β+k)

Given that f (β+k) ∈ C0([a, b]), Iβ−β
+ f (β+k) ∈ C0

+([a, b]), from Lemma 3. Hence cDβ
+ f ∈

Ck([a, b]) and
dk

dtk
cDβ

+ f(a) = 0. Moreover, cDβ
+ f(a) = 0 from Lemma 4. Finally, cDβ

+ f ∈
Cp

+([a, b]).

8.4. Lemma 8. —

Proof. — If β ∈ N∗, this is the classical formula for integration by parts. Else, since g ∈
C

β

0 ([a, b]), gβ ∈ Lp([a, b]), with p ≥ 1/β. Furthermore, f (β) ∈ L1([a, b]), so equation 2.20 of
[32, p.34] is valid: ∫ b

a
f(t) · cDβ

− g(t) dt = (−1)β

∫ b

a
Iβ−β

+ f(t) · g(β)(t) dt.

Moreover, for all 0 ≤ k ≤ β − 1, g(k)(a) = g(k)(b) = 0. Therefore, iterating the classical
integration by parts β times leads to:

(−1)β

∫ b

a
Iβ−β

+ f(t) · g(β)(t) dt =
∫ b

a

dβ

dtβ
Iβ−β

+ f(t) · g(t) dt =
∫ b

a
Dβ

+ f(t) · g(t) dt.

We proceed likewise for the other relation.
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8.5. Lemma 13. —

Proof. — The beginning of the proof of Lemma 6 with k = 1 is valid with the hypothesis

f ∈ AC2([a, b]): it shows that cDα
+ f ∈ AC([a, b]) and cDα

+ ◦ cDα
+ f =

d

dt
I2−2α

+ f ′.

– If 0 < α < 1/2, for all t ∈ [a, b],
d

dt
I2−2α

+ f ′(t) =
d

dt
I1−2α

+ (f(t)− f(a))

= D2α
+ h(t),

with h(t) = f(t)−f(a). Since h ∈ C1
+([a, b]), D2α

+ h = cD2α
+ h. Finally cD2α

+ h = cD2α
+ f .

– If α = 1/2, for all t ∈ [a, b],
d

dt
I2−2α

+ f ′(t) =
d

dt
[f(t)− f(a)] = f ′(t).

– If 1/2 < α < 1, for all t ∈ (a, b],
d

dt
I2−2α

+ f ′(t) = D2α−1
+ f ′(t)

= cD2α−1
+ f ′(t) +

f ′(a)
Γ(2− 2α)

(t− a)1−2α,

from Theorem 2 applied to f ′ ∈ AC([a, b]). Finally,

cDα
+ ◦ cDα

+ f(t) = cD2α
+ f(t) +

f ′(a)
Γ(2− 2α)

(t− a)1−2α.
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