
COHERENT DISCRETE EMBEDDINGS FOR

LAGRANGIAN AND HAMILTONIAN SYSTEMS

by

J. Cresson, I. Greff & C. Pierre

Abstract. — The general topic of the present paper is to study the conservation
for some structural property of a given problem when we discretise it. Precisely we
are interested with Lagrangian or Hamiltonian structures and thus with variational
problems attached to a least action principle. Considering a partial differential equa-
tion (PDE) deriving from such a variational principle, a natural question is to know
whether this structure at the continuous level is preserved at the discrete level when
discretising the PDE. To address this question a concept of coherence is introduced.
Both the differential equation (the PDE translating the least action principle) and
the variational structure can be embedded at the discrete level. This provides two
discrete embeddings for the original problem. In case these procedures finally provide
the same discrete problem we will say that the discretisation is coherent. Our pur-
pose is illustrated with the Poisson problem. Coherence for discrete embeddings of
Lagrangian structures is studied for various classical discretisations (finite elements,
finite differences and finite volumes). Hamiltonian structures are shown to provide co-
herence between a discrete Hamiltonian structure and the discretisation of the mixed
formulation of the PDE, both for mixed finite elements and mimetic finite differences
methods.
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Introduction

Many problems arising in various fields (such as physics, mechanics, fluid mechan-
ics or finance) are described using partial differential equations (PDEs). Although
explicit solutions are not available in general, important classes of PDEs do present
strong structural properties: classical examples are symmetry properties, maximum
principle or conservation properties. It is quite essential for the numerical methods
to provide a translation of these structural properties from the continuous level to
the discrete level so enforcing the numerical solutions to obey qualitative behaviours
in agreement with the underlying physic of the problem.

Two fundamental notions arising in classical mechanics are Lagrangian and Hamil-
tonian structures. Lagrangian systems are made of one functional, called the La-
grangian functional, and a variational principle called the least action principle.
From the least action principle is derived a second order differential equation called
the Euler-Lagrange equation, see e.g. [1]. The Lagrangian structure is much more
fundamental than its associated Euler-Lagrange equation: it contains informations
that the Euler-Lagrange equation does not. An important example is the change of
coordinates. The Lagrangian structure is independent from change of coordinates,
whereas the associated Euler-Lagrange equation may completely change of nature
(from linear to non linear for instance). A range of numerical methods forget about
the Lagrangian to focus on the Euler-Lagrange equation itself. This is for example
the case for the finite difference methods.

In this paper we address the first following question: consider a PDE deriving
from a Lagrangian and a least action principle. When discretising this PDE, how
is embedded the attached Lagrangian structure at the discrete level ? More precisely
we ask whether the discretised PDE can be seen as deriving from a discrete least
action principle associated with a discrete Lagrangian structure. Basically, in case
the Lagrangian structure is embedded at the discrete level, then the variational
property of the original equation (at the continuous level) may be preserved by the
discrete problem.

Aside from the Lagrangian systems are the Hamiltonian systems: under suitable
conditions a Lagrangian system can be reformulated as a Hamiltonian one. PDEs
deriving from an Hamiltonian structure inherit strong properties such as energy
conservation or existence of first integrals. Such PDEs moreover concern a wide
class of problems: like mixed formulations and saddle point problems [3] that usually
are associated with an important class of numerical methods (mixed finite elements
e.g.).
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The second question we address in this paper is whether Hamiltonian structures
can be embedded at the discrete level: do numerical solutions of PDEs deriving
from a Hamiltonian structure also derive from a discrete Hamiltonian structure ?
Again, in case a Hamiltonian structure is embedded at the discrete level, strong and
interesting properties might be inherited by the numerical solutions.

The concept of coherence is introduced to answer these two questions. Let us
consider a problem having a Lagrangian structure. That is to say consider a La-
grangian functional L on a functional space and the attached calculus of variations.
The solutions to the continuous problem satisfy a least action principle that reads
a second order PDE: the Euler-Lagrange equation. Discretisation can be performed
at two different levels:

– either discretise the Euler-Lagrange equation by defining discrete analogues to
the differential operators in this PDE. We will call discrete differential embed-
ding this procedure,

– or discretise the Lagrangian structure by defining a discrete Lagrangian func-
tional Lh. This second procedure is called discrete variational embedding. A
calculus of variations then can be developed at the discrete level on Lh to define
a discrete least action principle. This process of obtaining a discrete counter-
part of the Euler-Lagrange equation with the help of the discretisation of the
Lagrangian functional and the discrete least action principle is also called vari-
ational integrator. There is a wide range of work by Lubich [17], the group of
Marsden [18] on this topic preserving structures for ODEs.

In case the two discrete differential and discrete variational embeddings do define
equivalent discrete problems we will say that we have coherence. This is enunciated
in saying that the following diagram commutates:

Lagrangian L disc. diff. emb.−−−−−−−−−→ discrete Lagrangian Lh
L.A.P.

y y disc. L.A.P.

Euler-Lagrange equation
disc. var. emb.−−−−−−−−→ discrete Euler-Lagrange equation

where L.A.P stands for least-action principle. The same notion of coherence can be
defined relatively to Hamiltonian structures.

In case of coherence, the discretisation firstly preserves the variational structure
of the problem so inheriting interesting properties (such as independence with the
coordinate system). It secondly may also preserves algebraic properties from the
differential operators within the Euler-Lagrange equation.

Based on this notion of coherence, the present work is an attempt to inter-
pret numerical methods as variational integrators for PDEs deriving from a La-
grangian/Hamiltonian structure. We will focus on a canonical example of such a
problem: the Poisson equation. This classical problem being well documented both
at the continuous and at the discrete levels, it provides an appropriate test case
to improve the understanding of discrete embeddings for Lagrangian/Hamiltonian
structures and of the embedding of variational properties from the continuous to
the discrete level. Let us point out that such structures are not available for every
common problems, such as convection problems or the Navier-Stokes equations. The
structural numerical difficulties (numerical diffusion, stabilisation e.g.) attached to
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these problems have to be linked to this lack of variational structure. A general alter-
native to build new numerical schemes (or variational integrators) for such problems
would be:

1. construct a non classical variational structure for the considered problem as in
[8, 9, 10],

2. embed this structure at the discrete level.

Although this paper is mainly concerned with improving the understanding of dis-
crete embeddings of variational structures on a classical example, it is aimed to help
towards the development of new numerical schemes for it helps in controlling the
second step above.

The outline of the paper is as follows. Part I gives an informal introduction to
embedding formalism. We introduce the notions of discrete differential and discrete
variational embeddings of a given problem, as well as the concept of coherence
between these two embeddings.

Part II deals with Lagrangian systems. In section 4 are defined the Lagrangian
structure and the associated calculus of variations for fields. The Lagrangian struc-
ture for the Poisson equation is recalled in section 5. In section 6 is presented the
discrete embedding of a Lagrangian structure: the principle of coherence is defined
and conforming finite element methods are here shown to satisfy the coherence prin-
ciple for general Euler-Lagrange PDEs.

In part III we focus on the Poisson equation and on the coherence of two classical
numerical methods for this problem: finite differences and finite volumes in sections
7 and 8 respectively.

Part IV is concerned with Hamiltonian structures and mixed formulations. Hamil-
tonian structure and the associated calculus of variations are presented in section 9.
One recover the mixed form of the Poisson problem through its Hamiltonian formu-
lation. The discrete embedding of Hamiltonian structure and the notion of coherent
embedding are presented in section 10: coherence is shown to be naturally fulfilled
by conforming mixed finite element methods. Coherence of mimetic finite difference
methods, [4], for the mixed Poisson problem is analysed in the last section.

The general notations are detailed and listed at the end of the paper.
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PART I

DISCRETE EMBEDDINGS

The formalism of embeddings has been initiated in [8] and further developed in
[6], [9], [11], [2]. This part introduces, on an informal way, the notion of discrete
embeddings in the case of partial differential equations. The definitions will be
detailed in parts II, III and IV. For a complete introduction to embedding formalisms
for PDEs we refer to [7].

1. Discrete differential embeddings

Let Ω ⊂ Rd be a bounded domain and let M denotes some functional space on Ω.
In general, a PDE can be written as: find u ∈M so that,

(1) P (u) = 0,

where P is a differential operator. This differential operator can be written in
different forms. As an example, the classical Laplacian operator

∆ =
d∑
i=1

∂2
xi
,

can be rewritten as

∆ = div ◦∇.
We will adopt the following informal definition of a discrete differential embedding

of PDE (1):

Definition 1 (Discrete differential embedding). — A discrete differential em-
bedding of equation (1) is formally obtained by: firstly providing a discrete space Mh

(of finite dimension) in which the discrete solution uh will be sought and secondly
by providing a discrete operator Ph on Mh analogue to P .
The discrete differential embedding of equation (1) becomes: find uh ∈Mh so that

(2) Ph(uh) = 0.

As an example, let us formally consider ∆h, divh and ∇h discrete analogues of
the operators ∆, div and ∇ (precisions being given in the sequel). This leads to
two discrete differential embeddings for the Poisson problem: find uh ∈ Mh so that
either,

∆huh = 0,

or,

divh(∇huh) = 0.

These two discrete problems do not coincide in general. Indeed, recovering the
algebraic properties of the original differential operators (here ∆ = div ◦∇) at the
discrete level (here ∆h = divh ◦∇h) is a full problem by itself.
A second problem related to discrete differential embeddings is that it is based on
the form of the operator P , which form depends on the considered coordinate system
(used to write the equation).
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2. Discrete variational embeddings

We here assume that equation (1) derives from a variational principle. Precisely
that it is obtained from a least action principle on a functional

L : M → R,

namely, that the solutions of equation (1) coincide with the critical points of L.
Being considered a subset V ⊂ M referred to as the set of variations and denoting
DL(u)(v) the Gâteau derivative of L along a direction v ∈ V , we precisely have: for
any u ∈M :

P (u) = 0 ⇔ DL(u)(v) = 0 , ∀ v ∈ V.
This is referred to as a variational formulation for problem (1) and the correspon-
dence between the solutions of the PDE and the critical points of the functional a
variational principle.

Rather than discretising the differential operator P (i.e. to perform a discrete
differential embedding as previously defined) we here are led to the following alter-
native: discretise the functional L and define the discrete solutions uh through a
variational principle on Lh.

Definition 2 (Discrete variational embedding). — Assume that the PDE (1)
has a variational formulation given by a functional L and a set of variations V ⊂M .
A discrete variational embedding of equation (1) is formally obtained by: firstly
providing a discrete space Mh (of finite dimension) and a discrete set of variations
Vh ⊂ Mh and secondly by defining a discrete functional Lh : Mh → R analogue of
L.
The variational embedding of equation (1) is then defined as: find uh ∈ Mh such
that

(3) DLh(uh)(vh) = 0, ∀ vh ∈ Vh,

(i.e. uh is a critical point of Lh for the variation set Vh).

Discrete variational embeddings essentially possess interesting properties. The
main one being that the underlying object supporting the discretisation does not
depend on the coordinate system, on the contrary of the differential form (1) of the
problem and therefore of its discrete differential embedding. Discrete variational
embedding corresponds to the so-called variational integrators studied for ODEs by
Lubich [17] and the group of Marsden [18].

3. Coherence of differential and variational embeddings

As formally introduced here, there is no reason for the two discrete differential and
variational embeddings of a given problem to provide equivalent discrete problems.
This question is addressed considering the concept of coherence introduced in [8].
An informal statement is the following :

Definition 3 (Coherence). — Let problem (1) have a variational formulation.
Two given discrete differential and variational embeddings for (1) are said to be in
coherence in case the two discrete problems (2) and (3) are equivalent.
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In case of coherence, the discretisation of problem (1) not only preserves its vari-
ational structure but also the algebraic one of P .

A general raised question then is: Can we find conditions ensuring the coherence
between the discrete differential and variational embeddings ?

In the next three parts we study the coherence for discrete embeddings of problems
having a Lagrangian or Hamiltonian variational formulation. It turns out that one
cannot set apart the coherence from the algebraic properties of Ph inherited from
the one of P : more precisely for properties of integration by part type. A deeper
insight into this relationship is gained by considering the Poisson problem. When
performing a discrete differential embedding for the Poisson problem involving both
a discrete gradient and a discrete divergence (to define Ph), coherence is obtained in
case these two discrete operators fulfil some discrete analogue of the Green-Gauss
formula. This is the case for finite differences with formula (11) as detailed in remark
4. This also is the case for finite volumes with formula (22) in remark 5. Considering
the mimetic finite difference (see section 11 in part IV), such a discrete Green-Gauss
formula is a priori imposed in order to build the scheme and coherence here again
is satisfied.

PART II

DISCRETE VARIATIONAL EMBEDDING OF LAGRANGIAN
SYSTEMS

In the first section, we recall classical results about Lagrangian calculus of varia-
tions. Section 5 deals with the Lagrangian formulation of the Poisson problem. The
notions of discrete variational embedding and coherence in the Lagrangian case are
specified in section 6. As a first example, we discuss the case of conforming finite
element methods.

4. Lagrangian calculus of variations

In this section we define basics on calculus of variations applied to vector fields.
For more details, we refer to the books of Evans [12], Giaquinta and Hildebrand
[14], [15]. Let us note M = L2(Ω).

Definition 4. — An admissible Lagrangian function L is a continuous function

L : Ω× R× Rd −→ R
(x, y, v) 7→ L(x, y, v)

such that L is of class C2 with respect to y and v. Let us consider a subspace Dom(L)
of H1(Ω) satisfying: for all u ∈ Dom(L), L(·, u(·),∇u(·)) ∈ L1(Ω). The Lagrangian
function L defines the Lagrangian functional L:

L : Dom(L) → R,

u 7−→
∫

Ω

L(x, u(x),∇u(x)) dx.
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We are interested in vanishing the first variations of the Lagrangian functional L
on a space of variations V . As in [14], we could give general notion of extremals
and variations. We take the following definitions of the notions of differentiable
functional and extremal for L.

Definition 5 (Differentiability). — We consider a space of variations V ⊂ Dom(L).
The functional L is differentiable at point u ∈ Dom(L) if and only if the limit

lim
ε→0

L(u+ εv)− L(u)

ε

exists in any direction v ∈ V . We then define the differential DL(u) of L at point
u as

v ∈ V 7→ DL(u)(v) := lim
ε→0

L(u+ εv)− L(u)

ε
.

With the above definition of differentiability, one recovers the usual definition of
the differential in case V = Dom(L) and DL(u) is continuous on Dom(L). The
definition given here suffices to introduce extremals:

Definition 6 (Extremals). — A function u ∈ Dom(L) is an extremal for the
functional L relatively to the space of variations V ⊂ Dom(L) if L is differentiable
at point u and:

DL(u)(v) = 0 for any v ∈ V .

Proposition 1. — The Lagrangian functional L is differentiable at point u ∈ Dom(L)

if: x 7→ ∂L

∂y
(x, u(x),∇u(x)) and x 7→ ∂L

∂v
(x, u(x),∇u(x)) are in M and Md respec-

tively. In such a case the differential is given for any v ∈ Dom(L) by:

(4) DL(u)(v) =

∫
Ω

[
∂L

∂y

(
x, u(x),∇u(x)

)
v +

∂L

∂v

(
x, u(x),∇u(x)

)
·∇v

]
dx.

Proof. — Using a Taylor expansion of L at the point (x, u + εv,∇x(u + εv)) in the
variables y and v leads to:

L
(
x, u+εv,∇(u+εv)

)
= L(x, u,∇u)+ε v

∂L

∂y
(x, u,∇u)+∇x(ε v) · ∂L

∂v
(x, u,∇u)+o(ε)

Integrating over the domain Ω gives:

L(u+εv) = L(u)+

∫
Ω

ε v
∂L

∂y
(x, u(x),∇u(x))dx+

∫
Ω

(
ε∇v

)
·∂L
∂v

(x, u(x),∇u(x))dx+o(ε),

leading to (4).

Extremals of the functional L can be characterised by an order 2 PDE, called the
Euler-Lagrange equation given in following theorem.

Theorem 1 (Least action principle). — Let us assume the Lagrangian functional
L is differentiable at point u ∈ Dom(L) and that u is an extremal for a given space
of variations V . Assume moreover that ∂L

∂v
(·, u(·),∇u(·)) ∈ Hdiv(Ω) and that the

subspace V0 = {v ∈ V, v = 0 on ∂Ω} is dense in M . Then u satisfies the generalised
Euler-Lagrange equation:

(5)
∂L

∂y
(x, u(x),∇u(x))− div

(
∂L

∂v
(x, u(x),∇u(x))

)
= 0.
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Proof. — Following (4) and using the Green formula gives: ∀ v ∈ V0,∫
Ω

[
∂L

∂y
(x, u(x),∇u(x))− div

(
∂L

∂v
(x, u(x),∇u(x))

)]
vdx = 0.

which implies (5) by density of V0 in M .

5. Lagrangian structure for the Poisson problem

We consider the following Poisson problem on Ω for a homogeneous Dirichlet
boundary condition: find a solution u to

(6)

{
−∆u = f in Ω,
u = 0 on ∂Ω.

For a data f ∈M , the problem (6) has a unique solution u ∈ H2 ∩H1
0 (Ω).

For a function f ∈M , we consider the (admissible) Lagrangian function L:

L(x, y, v) =
1

2
v · v − f(x)y.

The associated Lagrangian functional L is defined on Dom(L) = H1(Ω) by:

L(u) =

∫
Ω

1

2
|∇u(x)|2 − f(x)u(x)dx,

and is differentiable on H1(Ω).

Theorem 2. — The solution of the Poisson problem (6) is the extremal u ∈ V for
L with the space of variations V = H1

0 (Ω).

Remark 1 (Generalisation). — Consider the general elliptic problem:

(7)

{
− div(α∇u) = f in Ω,

u = 0 on ∂Ω.

for the tensor x ∈ Ω 7→ α(x) ∈ Rd×d (strongly elliptic, positive, symmetric, and
bounded). The solution of problem (7) is the extremal u ∈ H1

0 (Ω) of the Lagrangian
functional L associated with

L(x, y, v) =
1

2
(α(x)v) · v − f(x)y,

and for the space of variations V = H1
0 (Ω).

6. Coherence for discrete embeddings of Lagrangian structure

In this section, we suppose given a conformal mesh Th of the domain Ω. A precise
definition for a mesh (which is not needed here) is given in definition 11. To the
functional spaces M and V are associate discrete counterparts Mh and Vh. We
suppose given a discrete Lagrangian functional Lh defined on Mh.

Remark 2. — A general definition for a discrete Lagrangian is not obvious and
greatly differs from a numerical scheme to another. In the following, we show that
a discrete Lagrangian for the general Euler-Lagrange equation (5) is available in the
case of conforming finite element methods. Part III deals with the definition of a
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discrete Lagrangian for the Poisson problem in the case of finite volume and finite
difference methods.

Definition 7 (Discrete least action principle). — A discrete function uh ∈Mh

is an extremal of Lh relatively to a space of variations Vh if

(8) DLh(uh)(vh) = 0 for any vh ∈ Vh.
Equation (8) is called the discrete Euler-Lagrange equation and the procedure
discrete least action principle.

Definition 8 (Coherence principle). — A discretisation procedure is said co-
herent if the discrete differential embedding of the Euler-Lagrange equation (5) is
the discrete Euler-Lagrange equation (8) coming from the discrete least action prin-
ciple. This is equivalent to the commutation of the following diagram:

u ∈M 7→ L(u)
disc. diff. emb.−−−−−−−−→ uh ∈Mh 7→ Lh(uh)

L.A.P.

y ydisc. L.A.P.

u solution of PDE
disc. var. emb.−−−−−−−−→ uh solution of PDEh

(E.L. equation (5)) (discrete E.L. equation (8))

In other words, the procedure is coherent if the direct discretisation of the Euler-
Lagrange equation given by the discrete differential embedding leads to the same
solutions as the one given by the associated discrete variational embedding.

Coherence for conforming finite element methods. — We consider here the
Euler-Lagrange PDE (5) together with a homogeneous Dirichlet boundary condition
u = 0 on ∂Ω. For simplicity we assume that we can set Dom(L) = H1

0(Ω). We
consider Mh a classical conforming finite element discretisation of H1

0 (Ω) relatively
to the mesh Th. For instance, in case the mesh is a triangulation, Mh denotes the
P k-Lagrange finite element space of continuous functions polynomial of order k in
each cell of the triangulation (see e.g.[5, 16]). We then define Vh as the subset of
Mh made of the functions uh ∈Mh that vanishes on ∂Ω.

The discrete differential embedding of PDE (5) given by the finite element method
is: find uh ∈ Vh such that, for all vh ∈ Vh,

(9)

∫
Ω

(∂L
∂y

(x, uh,∇uh)vh +
∂L

∂v
(x, uh,∇uh) · ∇vh

)
dx = 0.

A discrete variational embedding is provided by defining the discrete Lagrangian
Lh as:

Lh := L|Mh
.

This definition holds since for conforming finite element methods Mh ⊂ Dom(L).

Theorem 3 (Coherence). — The conforming finite element methods for PDE (5)
is coherent. Precisely the singular points of the discrete Lagrangian Lh with respect
to the space of variations Vh and the solutions of the discretisation (9) coincide.

Remark 3. — By definition conforming finite element methods are based on some
weak formulation. This weak formulation might or might not be a variational for-
mulation of some least action principle: this is typically the case for the Poisson
equation but not for the for convection-diffusion or Navier-Stokes equation. If the
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weak formulation coincides with a variational formulation, the conforming finite el-
ement discretisation is naturally coherent with the underlying variational principle
and the associated Lagrangian structure.

PART III

COHERENCE OF CLASSICAL DISCRETE EMBEDDINGS

In section 6 of the previous part we showed a first example of coherent discrete
embedding of Lagrangian structure. In this precise case, several facilities where
available: the discrete solution had a clear definition as a function uh : Ω → R so
that differentiation and integration had the same sense at the discrete and at the
continuous levels. As a result the definition of a discrete Lagrangian Lh was obvious
and natural: Lh was the restriction of L to some functional space of finite dimension.

Such facilities are not always available: they rather are restricted to conforming
finite element methods. In general, differentiation and integration have to be re-
defined at the discrete level to provide a definition of a discrete Lagrangian. In this
part we give two examples of discrete embeddings for a Lagrangian structure: finite
differences and classical finite volumes. Coherence is proved for the discretisation of
the general Euler-Lagrange PDE (5) in the case of finite differences and in the case
of the (isotropic) Poisson problem for finite volumes.

7. Finite differences

We consider in this section the general Euler-Lagrange PDE (5) together with a
homogeneous Dirichlet boundary condition u = 0 on ∂Ω. We refer to [19] concerning
the finite difference method. For simplicity, the domain will here be set to Ω = [0, 1]d.
We consider a Cartesian grid Th of Ω with uniform size h = 1/N , N ∈ N∗, in each
direction. The results of this section can be extended to more general domains and
more general lattices without difficulty.

We will use the following notations here. For j = (j1, . . . , jd) ∈ Nd, we de-
note j>i (resp. j<i ) the shift of j by +1 (resp −1) in the ith component: j>i :=
(j1, . . . , ji−1, ji+1, ji+1, . . . , jd), J denotes the subset of Nd J := {j ∈ Nd, 0 ≤ j ≤ N}.
The point of coordinates (j1h, . . . , jdh) is denoted xj ∈ Rd. The considered grid Th
then is the grid with vertices {xj, j ∈ J}.

7.1. Discrete differential embedding. — Let us consider the two spaces of
mappings: S := {uh : Zd −→ R} and V := {Fh : Zd −→ Rd}, whose elements are
respectively denoted (uj) and (Fj). We introduce the discrete gradient and discrete
divergence operators: ∇h : S −→ V and divh : V −→ S as:

(10) (∇huh)j =
1

h

 uj>1 − uj
...

uj>d − uj

 , (divh Fh)j =
d∑
i=1

[
Fj − Fj<i

h

]
i

,

where [X]i stands for the ith component of the vector X ∈ Rd.
We consider the discrete functional spaces Mh and Vh defined as: Mh := {uh ∈



12 JACKY CRESSON, ISABELLE GREFF & CHARLES PIERRE

S, uj = 0 if j /∈ J} and Vh := {uh ∈ Mh, uj = 0 if j ∈ ∂J}. The resort to S and V
is motivated by the simplifications it provides in the notations only.

With these definitions, we have the following discrete Green-Gauss formula:

(11) ∀ uh ∈ Vh, ∀ Fh ∈ V :
∑
j∈J

Fj · (∇huh)j h
d = −

∑
j∈J

(divh Fh)j uj h
d.

Remark 4. — Up to now, different choices have been made for the definition of
discrete differentiation operators. The discrete gradient is defined using a forward
Euler scheme whereas the discrete divergence uses a backward Euler differentiation
formula. Other choices are possible: for instance forward on the divergence and
backward on the gradient, or either a centered scheme for both operators. The cru-
cial point is that whatever are their definitions, the two discrete operators have to
commute in a discrete Green-Gauss formula of type (11) to eventually ensure the
coherence.

Definition 9. — The discrete differential embedding given by the finite difference
discretisation of the Euler-Lagrange PDE (5) reads: find uh ∈ Vh such that,

(12)

(
∂L

∂y
(x, uh,∇huh)− divh

(
∂L

∂v
(x, uh,∇huh)

))
j

= 0,

for all j such that xj ∈ Ω (i.e. 0 < j < N) and with:(
∂L

∂y
(x, uh,∇huh)

)
j

=
∂L

∂y
(xj, uj, (∇huh)j)(

∂L

∂v
(x, uh,∇huh)

)
j

=
∂L

∂v
(xj, uj, (∇huh)j)

7.2. Discrete variational embedding, coherence. —

Definition 10 (Discrete Lagrangian). — We consider the following definition
for the discrete Lagrangian functional Lh : Mh −→ R, associated to the continuous
Lagrangian functional L : M −→ R given in definition 4

(13) Lh(uh) =
∑
j∈J

L(xj, uj, (∇huh)j) h
d.

The discrete Euler-Lagrange equation then is:

(14) Find uh ∈ Vh such that : DLh(uh)(vh) = 0 for any vh ∈ Vh.

Theorem 4 (Coherence). — The finite difference discretisation of the Euler-Lagrange
PDE (5) is coherent in the sense with definition 8. Precisely: the solution of the dis-
crete Euler-Lagrange equation (14) and the solution of the discretised Euler-Lagrange
equation (12) coincide.

Proof. — Let us consider a solution to (14). We then have:∑
j∈J

∂L

∂y
(xj, uj, (∇huh)j)vj +

∑
j∈J

∂L

∂v
(xj, uj, (∇huh)j) · (∇hvh)j = 0.

Using the discrete Green-Gauss Formula (11) we exactly recover the discretised
Euler-Lagrange equation (12).
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8. Finite Volumes

We consider in this section the classical finite volume method (as presented e.g.
in [13]) for the Poisson problem (6). The following definitions and notations will be
needed.

Definition 11 (Mesh Th, cells K, faces E and vertices N )
A cell (or control volume), generically denoted K, is a polygonal/polyhedral open

subset K ⊂ Ω.
A mesh Th of the domain Ω is a collection of cells K partitioning Ω in the following
sense:

∪K∈ThK = Ω , K1, K2 ∈ Th ⇒ either K1 ∩K2 = ∅ or K1 = K2 .

A face (or an edge) e of some K ∈ Th such that e ⊂ ∂Ω is called a boundary face.
The set of boundary faces is denoted E0. It satisfies: ∂Ω = ∪e∈E0e. For every e ∈ E0,
there exists a unique K ∈ Th satisfying e ⊂ K ∩ ∂Ω: one writes e = K|∂Ω.
The internal faces set Ei associated with Th is the set of all geometrical subsets
e = K1 ∩ K2, K1, K2 ∈ Th and K1 6= K2, having non-zero (d − 1)−dimensional
measure. For every e ∈ Ei, there exist a unique couple K1, K2 ∈ Th satisfying
e = K1 ∩K2: one writes e = K1|K2.
The faces set associated with Th is given as E := E0∪Ei. It provides a partitioning of
∪K∈Th∂K, in the same meaning as earlier: ∪e∈Ee = ∪K∈Th∂K and the overlapping
of two distinct faces either is empty or of zero (d− 2)−dimensional measure.

Eventually, the set of vertices associated with Th is denoted N : it contains exactly
all the vertices of all the cells K ∈ Th.

Let e ∈ E such that e ⊂ ∂K for K ∈ Th. We denote nK,e the unit normal to e
pointing outward of K.

One shall also denote by |O| the measure of a geometrical object O according to
its dimension: taking d = 3, |K| is the volume of the cell K, |e| the area of e ∈ E
and |xy| the length between two points x and y.

Two sets of points are introduced: cells centres (xK)K∈Th and boundary faces
centres (xe)e∈E0 . They satisfy:

∀ K ∈ Th, ∀e ∈ E0 : xK ∈ K, xe ∈ e .(15)

∀e ∈ Ei : e = K1|K2, [xK1 , xK2 ] ⊥ e,

∀e ∈ E0 : e = K|∂Ω, [xe, xK ] ⊥ e.(16)

Conditions (15)-(16) are referred to as admissibility conditions. They impose a
strong constraint on the mesh Th. Non conformal meshes for instance cannot fulfil
such a constraint.
Distances (de)e∈E across the faces are defined as follows:

∀e = K1|K2 ∈ Ei : de = |xK1xK2| ,
∀e = K|∂Ω ∈ E0 : de = |xKxe| .

8.1. Discrete differential embedding. — To the mesh Th is associated the
discrete functional space Mh:

Mh := {uh ∈M, uh =
∑
K∈Th

uKχK , uK ∈ R} ,(17)
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where χK is the characteristic function of the cell K: Mh is the space of piecewise
constant functions on the cells K ∈ Th. An element uh ∈Mh will be simply denoted
by its component: uh = (uK)K∈Th .

The following interpolation operator I is considered:

(18) I : f ∈M 7→ f I ∈Mh , f IK :=
1

|K|

∫
K

f dx , ∀ K ∈ Th.

To uh ∈Mh are associated its numerical fluxes along the edges e ∈ E , using a finite
difference scheme as follows:

∀ e = K1|K2 ∈ Ei : Fe,K1 =
uK2 − uK1

de
,(19)

∀ e = K|∂Ω ∈ E0 : Fe,K = −uK
de
.

Definition (19) of the fluxes on the boundary is the discretisation of the homogeneous
Dirichlet boundary condition in (6) considered here. Of particular importance is the
following continuity relation:

(20) ∀ e = K1|K2 ∈ Ei , Fe,K1 = −Fe,K2 .

This property motivates the following definition:

∀ e ∈ E , Fe := |Fe,K | , for any K ∈ Th such that e ⊂ ∂K .

Definition 12. — A discrete Laplace operator ∆h : Mh → Mh is defined as fol-
lows. For uh ∈Mh:

∀K ∈ Th , (∆huh)K :=
1

|K|
∑

e∈E, e⊂∂K

Fe,K |e| .

The discrete differential embedding given by the finite volume scheme for problem
(6) reads:

find uh ∈Mh so that : −∆huh = f I .(21)

Remark 5. — It is interesting to consider the discrete Laplacian ∆h as the compo-
sition of the flux operator in (19) with a discrete divergence operator (of finite volume
type). Being given a flux distribution F = (Fe,K)e∈E, e∈∂K, the discrete divergence is
given on each cell K ∈ Th by:

divK F =
1

|K|
∑
e∈∂K

Fe,K |e|.

In this way ∆h in definition 12 expresses a flux balance on each cell K mimicking
in a discrete context the divergence formula.

Moreover we have the discrete Green-Gauss formula for a flux distribution F
satisfying the continuity property (20) and for uh ∈Mh:
(22)∑
K∈Th

(divK F )uK |K| = −
∑

e=K1|K2∈Ei

Fe,K1

uK2 − uK1

de
|de||e|+

∑
e=K|∂Ω∈E0

Fe,KuK |e|.
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8.2. Discrete variational embedding, coherence. — In the continuous case,
the energy term |∇u|2 is part of the Lagrangian functional L. In the framework of
finite volume method, no proper discrete gradient is available. Actually the numeri-
cal fluxes definition (19) involves a discrete differentiation in the normal direction to
the mesh faces. Thus only the normal component of some discrete gradient on the
mesh faces is approximated in the finite volume framework and not the tangential
one.
The discrete differentiation along the face normal direction is used to define a dis-
crete Lagrangian functional:

Definition 13. — The discrete Lagrangian functional Lh : Mh → R is defined as:

∀uh ∈Mh , Lh(uh) =
1

2

∑
e∈E

F 2
e |e|de −

∑
K∈Th

f IKuK |K| .(23)

Theorem 5 (Coherence). — The finite volume discretisation for the Poisson prob-
lem (6) is coherent in the sense of definition 8. Precisely: let us consider the discrete
least action principle associated with (23): find uh ∈Mh such that,

∀ vh ∈Mh : DLh(uh)(vh) = 0.

Then this problem has a unique solution which is moreover the unique solution of
(21).
Note that here Mh = Vh, the boundary condition being encoded directly in the defi-
nition of the discrete Laplace operator (through the fluxes definition (19)) and not
in the choice of the variation space.

Proof. — With definition (23), Lh is clearly strictly convex and has a unique mini-
mum. Differentiating (23), it comes: ∀ uh, vh ∈Mh,

DLh(uh)(vh) = −
∑
K∈Th

f IKvK |K| +
∑

e=K|∂Ω∈E0

uK
de
vK |e|

+
∑

e=K1|K2∈Ei

uK1 − uK2

de
(vK1 − vK2)|e| .

Using the discrete Green-Gauss formula (22) with the flux distribution F equal to
the flux of uh given by (19) we simply get:

DLh(uh)(vh) = −
∑
K∈Th

(
f IK + divK F

)
vK |K| = −

∑
K∈Th

(
f IK + (∆huh)K

)
vK |K|.

Thus, the condition DLh(uh)(vh) = 0 for all vh ∈Mh exactly reads −∆huh = f I .
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PART IV

HAMILTONIAN CALCULUS OF VARIATIONS AND MIXED
FORMULATIONS

In this part let L : Ω×R×Rd be an admissible Lagrangian function as defined in
section 4. We recall the link between Hamiltonian and Lagrangian systems. More-
over we try to understand the mixed formulation as a Hamiltonian system. As an
application, we consider the Poisson problem.

Let us recall that M = L2(Ω) and X = [L2(Ω)]
d
.

9. Hamiltonian and mixed formulation

9.1. Hamiltonian formulation. —

Definition 14 (Legendre property). — We say that L satisfies the Legendre

property if the mapping v 7→ ∂L

∂v
(x, y, v) is a bijection on Rd for any x ∈ Ω, y ∈ R.

If L satisfies the Legendre property, the following function g : Ω× R× Rd → Rd

is well defined:

v = g(x, y, p) with p =
∂L

∂v
(x, y, v).

Let us consider p :=
∂L

∂v
(x, y, v) as a new variable, then,

p =
∂L

∂v

(
x, y, g(x, y, p)

)
and g

(
x, y,

∂L

∂v
(x, y, v)

)
= v .

Definition 15 (Hamiltonian). — Let L satisfy the Legendre property. The Hamil-
tonian H : Ω× R× Rd → R associated to L reads:

H(x, y, p) = p · g(x, y, p)− L(x, y, g(x, y, p)).

We introduce two different definitions for the Hamiltonian functionalH : Dom(H)→
R associated to H with domain Dom(H) ⊂ M× X:

1. Primal Hamiltonian.

(24) H(u,F) :=

∫
Ω

F · ∇u−H(x, u,F) dx.

2. Dual Hamiltonian.

(25) H(u,F) :=

∫
Ω

− div(F)u−H(x, u,F) dx.

For both the primal and the dual cases, we formally define Dom(H) as a subspace
of M ×X on which the Hamiltonian functional is well defined. For the primal case
we have Dom(H) ⊂ H1(Ω)× X whereas for the dual case Dom(H) ⊂ M× Hdiv(Ω).
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Proposition 2. — We consider a space of variations V ×W ⊂ Dom(H). Following
the definitions in section 4, the Hamiltonian functional H is differentiable at point
(u,F) ∈ Dom(H) if

∂H

∂y
(x, u,F) ∈M and

∂H

∂p
(x, u,F) ∈ X.

In such a case we have:

– In the primal case:
(26)

DH(u,F) · (v,G) =

∫
Ω

[
G ·

(
∇u− ∂H

∂p
(x, u,F)

)
+∇v · F− v∂H

∂y
(x, u,F)

]
dx.

– In the dual case:

DH(u,F)·(v,G) =

∫
Ω

[
− div(G)u−G · ∂H

∂p
(x, u,F)− v

(
div F +

∂H

∂y
(x, u,F)

)]
dx.

Definition 16 (Extremals). — Let us consider a space of variation V × W ⊂
Dom(H). We say that (u,F) ∈ Dom(H) is an extremal for H relatively to V ×W
if H is differentiable at point (u,F) and:

DH(F, u) · (G, v) = 0 ∀ (v,G) ∈ V ×W.

Theorem 6 (Hamilton’s least action principle). — Let (u,F) ∈ Dom(H) be
an extremal for H relatively to V ×W . Assume moreover that:

– in the primal case: F ∈ Hdiv(Ω), V0 = {v ∈ V, v = 0 on ∂Ω} is dense in M
and W is dense in X,

– in the dual case: u ∈ H1(Ω), V is dense in M and W0 = {G ∈ W,G · n =
0 on ∂Ω} is dense in X.

Then (u,F) is a solution of the Hamiltonian system:

(27)


div F = −∂H

∂y
(x, u,F)

∇u =
∂H

∂p
(x, u,F).

Proof. — Let us consider the case of the primal definition of the Hamiltonian func-
tional H. Since F ∈ Hdiv(Ω), using the Green formula in (26) gives: ∀(v,G) ∈
V ×W ,∫

Ω

−
(
div F +

∂H

∂y
(x, u,F)

)
v + G

(
∇u− ∂H

∂p
(x, u,F)

))
dx +

∫
∂Ω

v F · n ds = 0.

The boundary integral vanishes for v ∈ V0. We recover (27) by density of V0 in M
and of W in X.

Corollary 1 (Lagrangian and Hamiltonian formulations)
The solutions (u,F) of the Hamiltonian system (27) are exactly the solutions of

the Euler-Lagrange equation (5) under the condition

F :=
∂L

∂v

(
x, u,∇xu)

)
.



18 JACKY CRESSON, ISABELLE GREFF & CHARLES PIERRE

9.2. Application to the Poisson problem. — We consider problem (7). We
recall that the Lagrangian function associated with this problem is

L(x, y, v) =
1

2
(α(x)v) · v − f(x)y.

The Legendre property is clearly satisfied by L since
∂L

∂v
(x, y, v) = α(x)v. We

introduce the new variable p = α(x)v and the function g is given by g(x, y, p) =
α−1(x)p. A Hamiltonian for the Poisson equation is then given by

(28) H(x, y, p) = p ·
(
α−1(x)p

)
−L(x, y, g(x, y, p)) =

1

2
α−1(x)p · p+ f(x)y.

Proposition 3. — The Hamiltonian system (27) associated with (28) is the mixed
formulation of the Poisson problem (7):

(29)

{
− div F = f

∇u = α−1(x)F .

The mixed problem (29) together with the homogeneous Dirichlet boundary con-
dition u = 0 on ∂Ω has the classical mixed weak formulations:

1. Primal formulation: look for (u,F) ∈ H1
0 (Ω)×X such that

(30)

{
−(F,∇v)0,Ω = −(f, v)0,Ω , ∀v ∈ H1

0 (Ω)

(α−1F−∇u,G)0,Ω = 0 , ∀G ∈ X

2. Dual formulation: look for (u,F) ∈M ×Hdiv(Ω) such that

(31)

{
(div F + f, v)0,Ω = 0 , ∀v ∈M
(α−1F,G)0,Ω + (u, div G)0,Ω = 0 , ∀G ∈ Hdiv(Ω)

Proposition 4. — A solution for (30) is an extremal (u,F) ∈ H1
0 (Ω)×X for the

primal definition (24) of H relatively to the space of variations V ×W = H1
0 (Ω)×X.

A solution for (31) is an extremal (u,F) ∈ M × Hdiv(Ω) for the dual definition
(25) of H relatively to the space of variations V ×W = M ×Hdiv(Ω).

10. Discrete Hamiltonian and Coherence

Let us consider a discretised version of the mixed problem (27) obtained by some
numerical scheme. If the discrete problem is also an extremal of a discrete Hamil-
tonian functional the considered numerical scheme is said to be coherent. It is the
analogue of definition 8 to the Hamiltonian functional. Let us precise here the
notion of coherence regarding Hamiltonian structures. We assume we have two dis-
crete spaces Mh and Xh and an equation on Mh×Xh that we refer to as the discrete
differential embedding for PDE (27). On the other hand assume that we have a
discrete Hamiltonian Hh : Mh ×Xh → R. If the solutions (uh,Fh

) of the discrete
differential embedding for system of PDEs (27) are the solutions of the discrete least
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action principle DHh(uh,Fh
) = 0 then the discretisation is said coherent. This can

be summarised by saying that the following diagram commutes:

(u,F) ∈M ×X 7→ H(u,F)
disc. var. emb.−−−−−−−−→ (uh,Fh

) ∈Mh ×Xh 7→ Hh(uh,Fh
)

L.A.P.

y y disc. L.A.P.

(u,F) solution of PDE (27)
disc. diff. emb.−−−−−−−−→ (uh,Fh

) solution of PDEh

(Hamiltonian system) (discrete Hamiltonian system)

Remark 6 (Coherence for conforming mixed finite element)
We point out here that the mixed finite element schemes naturally are coherent.

Consider some classical discretisation Mh and Xh of M and X (for example Mh =
P 0(Th) and Xh = RT 0(Th) the Raviart-Thomas elements of order 0, see e.g. [16]). A
discrete differential embedding of (27) given by the conforming mixed finite element
method relatively to a homogeneous Dirichlet boundary condition reads:
look for (uh,Fh

) ∈Mh ×Xh such that for any (vh,Gh
) ∈Mh ×Xh,∫

Ω

[
− div(G

h
)uh −G

h
· ∂H
∂p

(x, uh,Fh
)− vh

(
div F

h
+
∂H

∂y
(x, uh,Fh

)

)]
dx = 0.

A discrete variational embedding is provided by defining the discrete Hamiltonian
Hh : Mh×Xh → R as the restriction of H to Mh×Xh. This definition makes sense
when considering conforming finite elements where Xh ⊂ Hdiv(Ω).
So defined, the discrete embeddings naturally are coherent.

Remark 7. — Let us note that the definition of the Legendre property is not clear
on the discrete level. As an example, considering again the Raviart-Thomas elements
of order 0 for the mixed Poisson problem, we do not get Fh = ∇uh, but some more
complicated formula depending also on the source term f .

11. Mimetic Finite Differences

We consider the mixed Poisson problem (29) together with a homogeneous Dirich-
let condition u = 0 on ∂Ω. The dual weak formulation (31) is adopted. The spaces
of variations are set to V = M = L2(Ω), and W = X = Hdiv(Ω). The ambient space
M ×X is equipped with the following scalar products:

(u, v)M =

∫
Ω

uv dx , (F,G)X =

∫
Ω

α−1F ·G dx.

A flux operator G : H1(Ω) ⊂M −→ X is introduced: Gu = α∇u. This operator is
adjoint to the divergence operator div : W ⊂ X −→M in the following sense:

∀ u ∈ H1
0 (Ω) , ∀ F ∈ W : (F,Gu)X = − (div F, u)M .

In the Mimetic Finite Differences (MFD) framework, two discrete functional spaces
Mh and Wh are introduced allowing to define discrete divergence divh : Wh −→Mh.
Scalars products on Mh and Wh are then introduced. A discrete flux operator is
eventually introduces as (minus) the adjoint of the discrete divergence. We refer to
[4] for the MFD discretisation of diffusion problems.
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11.1. Discrete differential embedding. — A mesh Th of the domain Ω is con-
sidered, the definitions and notations in definition 11 are adopted here. The discrete
space Mh is set to be the space of piecewise constant functions on the mesh cells
K ∈ Th defined in (17). We consider the notations introduced in section 8 and the
interpolation operator I : u ∈M −→ uI ∈Mh defined in (18) . We consider on Mh

the scalar product induced by the Euclidean structure on M :

(32) ∀uh, vh ∈Mh : [uh, vh]Mh
=
∑
K∈Th

uKvK |K|.

Fluxes are associated to each face e ∈ E . To define such fluxes, a crossing direction
has to be considered on the faces: to every cells K ∈ Th and to every e ∈ E such that
e ⊂ ∂K we define nK,e the unit normal to e pointing outward from K. Numerical
fluxes FK,e ∈ R are associated to each face e in the direction nK,e. We introduce the
continuity condition:

(33) ∀e = K1|K2 ∈ Ei : FK1,e + FK2,e = 0.

The discrete space Wh is defined as

Wh := {(FK,e) for K ∈ Th, e ∈ E s.t. e ⊂ ∂K that satisfies (33)} .

The dimension of Wh is equal to the number #E of faces in E . However, no canon-
ical isomorphism between Wh and R#E is available: to define such an isomorphism
necessitates to prescribe a crossing sense on each face e ∈ E .
The following interpolation operator is considered:

F ∈ W 7→ FI ∈ Wh : FI
K,e :=

1

|e|

∫
e

F · nK,eds.

Definition 17. — The discrete divergence divh : Wh −→Mh is defined as,

∀ Fh ∈ Wh , ∀ K ∈ Th , (divh Fh)K :=
1

|K|
∑

e∈E,e⊂∂K

FK,e|e|.

For all F ∈ W , we have (div F)I = divh
(
FI
)
, meaning that the following diagram

commutes:

W
div−−−→ M

I

y yI

Wh
divh−−−→ Mh

The definition of a scalar product on Wh is not obvious. Let us consider K ∈ Th
and denote WK

h the restriction of Wh to K. We suppose that a cell scalar product
[·, ·]K is given on each WK

h ∈ Th and thus defines the scalar product on Wh as:

(34) ∀Fh, Gh ∈ Wh : [Fh, Gh]Wh
:=
∑
K∈Th

[Fh, Gh]K ,

the definition of [·, ·]K will be detailed later on. Relatively to the scalar products
(32) and (34), the discrete flux operator Gh : Mh −→ Wh is defined as (minus) the
adjoint of the discrete divergence Gh = − div?h, where ? stands for the adjoint.
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Problem (29) is then discretised as follows, [4]: find uh ∈ Mh and Fh ∈ Wh such
that, {

− divh Fh = f I

Fh − Ghuh = 0

which is equivalent with: find uh ∈Mh and Fh ∈ Wh such that,

(35)

{
∀ vh ∈Mh, [divh Fh, vh]Mh

= −[f I , vh]Mh

∀ Gh ∈ Wh, [Fh, Gh]Wh
+ [uh, divhGh]Mh

= 0
.

A way to define the elemental scalar product (34) is to introduce a lifting operator

RK : WK
h −→ [L2(K)]

d
and then to define:

[Fh, Gh]K :=

∫
K

α−1(x)RK(Fh) · RK(Gh)dx.

Consistency is ensured by imposing the three following conditions on the lifting
operators. For all K ∈ Th and all Fh ∈ WK

h :

∀ e ∈ E , e ⊂ ∂K : RK(Fh) · nK,e = FK,e ; div (RK(Fh))) = divK (Fh) ;

and for all constant vector c ∈ Rd:

RK

(
cI
)

= c.

11.2. Discrete variational embedding, coherence. — We consider the dual
definition (25) for the Hamilton functional H on M ×W relatively to H defined in
(28). It reads:

H(u,F) =

∫
Ω

α−1F · α∇u− 1

2

∫
Ω

α−1F · F−
∫

Ω

f(x)u

= (F,Gu)X −
1

2
(F,F)X − (u, f)M .

Definition 18 (Discrete Hamiltonian). — We therefore consider the following
definition of the discrete Hamiltonian functional: Hh : Mh ×Wh −→ R:

(36) Hh(uh, Fh) := [Fh,Ghuh]Wh
− 1

2
[Fh, Fh]Wh

−
[
uh, f

I
]
Mh

.

Theorem 7 (Coherence). — The MFD discretisation for the mixed Poisson prob-
lem (29) is coherent in the sense of section 10. Precisely: The discrete Hamiltonian
Hh in (36) has a unique singular point (uh, Fh) ∈Mh ×Wh such that

DHh(uh, Fh)(vh, Gh) = 0 ∀(vh, Gh) ∈Mh ×Wh.

This singular point is the unique solution to (35).

Proof. — Differentiating Hh gives:

DHh(uh, Fh)(vh, Gh) = [Fh,Ghvh]Wh
+ [Ghuh, Gh]Wh

− [Fh, Gh]Wh
−
[
f I , vh

]
Mh

.

A singular point (uh, Fh) for Hh then satisfies:{
∀ vh ∈Mh, [Fh,Ghvh]Wh

= [f I , vh]Mh

∀ Gh ∈ Wh, [Fh, Gh]Wh
− [Ghuh, Gh]Wh

= 0
,

which exactly reads (35) by using Gh = − div?h.
One can easily prove that (35) has a unique solution.
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Notations

– Ω open bounded domain Ω ⊂ Rd,

– ∂Ω domain boundary,

– M scalar function space on Ω, M = L2(Ω),

– X vector function space on Ω, X = L2(Ω)d,

– L Lagrangian function L : Ω× Rd × Rd −→ R,

– L Lagrangian functional L : M −→ R,

– H Hamiltonian function H : Ω× Rd × Rd −→ R,

– H Hamiltonian functional H : M ×X −→ R,

– h index for all discrete objects.

– Th mesh of Ω,

– E mesh faces (or edges in dimension 2),

– E0 boundary faces,

– Ei internal faces,

– N vertices set,

– K one cell (or control volume) of Th,

– e one face (or edge) of Th,

– |·| object measure (according to its dimension),

– Hm(Ω) denotes the Sobolev space of order m,

– ‖v‖m,Ω =
(∑

|α|≤m ‖∂αv‖2
0,Ω

)1/2

,

– for any f ∈ H1(Ω), its gradient is given by ∇f =


∂x1f
∂x2f
...
∂xdf

,

we refer to ∇xf to emphasise that the derivative is respect to the x parameter,
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– the divergence of a vector F is divF =
d∑
i=1

∂xiFi,

– H1
0 (Ω) =

{
v ∈ H1(Ω), v|∂Ω = 0

}
,

– Hdiv(Ω) = {v ∈ (L2(Ω))d, div v ∈ L2(Ω)}.
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