Surveillance vidéo sur réseaux de capteurs sans-fils: ordonnancement adaptatif avec prise en compte de la criticité

A. Makhoul, R. Saadi, C. Pham

Laboratoire LIUPPA, Université de Pau

CFIP 2009 Mardi 13 octobre, 2009

Prof. Congduc Pham http://www.univ-pau.fr/~cpham Université de Pau, France

TCAP project (2006-2009)

 « Video Flows Transport for Surveillance Application »

Software architecture for multimedia integration, supervision plateform, transport protocols & congestion control

CRAN (Nancy)

Video coding techniques, multi-path routing, interference-free routing

Traditionnal surveillance infrastructure

Towards large-scale pervasive environments

Surveillance scenario (1)

- Randomly deployed video sensors
- Not only barrier coverage but general intrusion detection
- Most of the time, network in so-called hibernate mode
- Most of active sensor nodes in *idle mode* with low capture speed
- Sentry nodes with higher capture speed to quickly detect intrusions

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- IDLE NODE: NODE WITH LOW SPEED CAPTURE.

Surveillance scenario (2)

- Nodes detecting intrusion must alert the rest of the network
- 1-hop to k-hop alert
- Network in so-called alerted mode
- Capture speed must be increased
- Ressources should be focused on making tracking of intruders easier

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

Surveillance scenario (3)

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
 - CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).
 - IDLE NODE: NODE WITH LOW SPEED CAPTURE.
- \bigcirc \bigcirc \bigcirc 0 \bigcirc \bigcirc
- back to hibernate mode
 Nodes on the intrusion path must

Network should go

- keep a high capture speed
- Sentry nodes with higher capture speed to quickly detect intrusions

Application's criticality

All surveillance applications may not have the same criticality level, r⁰∈ [0,1]

DEnvironmental, security, healthcare,...

Capture speed should decrease when r⁰ decreases

Sensor nodes could be initialized with a given r⁰ prior to deployment

How to meet app's criticality

- Capture speed can be a « quality » parameter
- Capture speed for node v should depend on the app's criticality and on the level of redundancy for node v
- V's capture speed can increase when as V has more nodes covering its own FoV - cover set

Node's cover set

Each node v has a Field of View, FoV, $\Box Co_i(v) = set of nodes v' such as$ $\bigcup_{v' \in Coi(v)} FoV_{v'}$ covers FoV_v $\Box Co(v) = set of Co_i(v)$ V_2 V₁ ٧_٦ $Co(v) = \{V_1, V_2, V_3, V_4\}$

Finding v's cover set

15

Active node selection

Criticality model (1)

Criticality model (2)

□ r⁰ can vary in [0,1]

BehaVior functions (BV) defines the capture speed according to r⁰

□ R⁰ < 0.5

□ Concave shape BV

□ R⁰ > 0.5

□ Convex shape BV

We propose to use Bézier curves to model BV functions

BehaVior function $B(t) = (1-t)^2 * P_0 + 2t(1-t) * P_1 + t^2 * P_2$ $P_1(r^0=1)$ $P_2(h_x, h_y)$ P₁ $P_1(r^0=0,8)$ $P_1(r^0=0.5)$ P2 Po $P_1(r^0=0,2)$ $P_0(0,0)$ $P_1(r^0 = 0)$

LOW CRITICAL LEVEL

HIGH CRITICAL LEVEL

Some typical capture speed

 Maximum capture speed is 6fps
 Nodes with size of cover set greater than 6 capture at the maximum speed

r^0 $ Co(v) $	1	2	3	4	5	6
0.0	0.05	0.20	0.51	1.07	2.10	6.00
0.2	0.30	0.73	1.34	2.20	3.52	6.00
0.5	1.00	2.00	3.00	4.00	5.00	6.00
0.8	2.48	3.80	4.66	5.27	5.70	6.00
1.0	3.90	4.93	5.49	5.80	5.95	6.00

Simulation settings

OMNET++ simulation model

- Video nodes have communication range of 30m and video sensing range of 25m, FoV is a sector of 60°
- Battery has 100 units
- Full coverage is defined as the region initially covered when all nodes are active

Percentage of active nodes

22

Percentage of coverage

Average capture speed

Fixed vs adaptive

25

Conclusions & future works

Criticality model with adaptive scheduling of nodes

Optimize the resource usage by dynamically adjusting the provided service level

Extension for risk-based scheduling in intrusion detection systems