INCREASED FLEXIBILITY IN LONG-RANGE IOT DEPLOYMENTS WITH TRANSPARENT AND LIGHT-WEIGHT 2-HOP LORA APPROACH

Wireless Days International Conference Manchester Metropolitan University, Manchester, UK April 24-26th, 2019

Authors: Mamour Diop and Congduc Pham

Presented on April 24th, 2019 by C. Pham

Prof. Congduc Pham http://www.univ-pau.fr/~cpham Université de Pau, France

LoRa LPWAN wireless technology

Semtech's LoRa provides low-power long-range transmission enabling several years of operation on batteries

«WAZIUP» «WAZihub»

Soil moisture monitoring

«WAZİUP» «WAZihub»

5

LOW-COST BUOY FOR FISH FARMING

Increasing production of aquaculture will help reduce the quantity of imported fishes in Africa

The aim is to monitor in real-time different parameters to control water quality and prevent some diseases that could affect fish in order to improve the quality and quantity of the production

KUMAH FARM, GHANA

- The Kwame Nkrumah University of Science and Technology (KNUST)
- Located on the campus of the Kwame Nkrumah University of Science and Technology in Kumasi, Ghana.
- □ The farm comprises 30 constructed fish ponds, a farm house, a recirculating aquaculture system (RAS) laboratory and store houses.

SANAR FARM, SENEGAL

- Farm located at less than 2 km from UGB.
- One pond is dedicated for the Waziup application : 50x25m, average depth of 0.5 meters, populated by 4000 individuals of saltwater tilapia.
- The basin is irrigated via a water supply system fed by a river in proximity.
- The water in the pond is changed every 10 days

SOIL HUMIDITY SENSOR FOR AGRICULTURE

Monitoring soil moisture and other parameters to provide insightful recommendations and notifications to farmers, and advisors

HATCHERY EXPERIMENT, BURKINA FASO

- Laboratory named Laboratoire d'Études des Ressources Naturelles et des Sciences de l'Environnement (LERNSE)
- NAZI BONI University in a small village of Bobo-Dioulasso city
- Sensors are placed in a hatchery and the box is placed outside of the building

LOCAL WEATHER STATION FOR AGRICULTURE

In agriculture, different factors can be monitored. Having the ability to control those factors is the key to increase the productivity. Agriculture MVP requirements: Obtain and produce weather related information which will be used to advise the farmers! Combine with open weathernap.org/ Combine with open weathernap.org/ data to get more accurate predictions

Get local weather measurements

Weather Web App

Pilot sites: Senegal, Togo, Ghana, Burkina Faso

 LoRaWAN gateway on top of DSP building by F. Ferrero (U. Nice), U. Danang and DSP team. Congrats Fabien!

Deployment in rural areas no high building ⊗

- Expected range: about 2-4kms
- 1-hop connectivity to gateway is difficult to achieve in real-world, remote, rural scenarios

Prof. Congduc Pham http://www.univ-pau.fr/~cpham

2-hop long-range approach

 smart, transparent relay node should be able to be inserted at anytime between end-devices and gateway to increase range

- 2 possible approaches
 - Use short Channel Activity Detection (CAD) to dynamically detect uplink messages (recent draft from Semtech)
 - Use an observation phase to determine device's schedule

LoRa's Channel Activity Detection (Waziup)

CAD reliability decreases as distance increases
 A CAD returning false does not mean that there is no activity!
 During a long transmission (i.e. several seconds) there is usually at least one CAD returning true

However, a relay node using short CAD will miss uplink packets!

Our relay's design choices

- Observation phase + data forwarding phase
- On-the-fly learning of incoming traffic from end-devices:
 observation phase
- Just-in-time wake up in data forwarding phase
- Minimum guard time to limit energy consumption
- Deep sleep between 2 wake up
- No additional hardware → low-cost sensor nodes can be recycled as relay node
- Can handle downlink messages from gateway

• Device i wakes up and transmit every I_target_i

• Target TX time for device i: T0_i+n*l_target_i

• Real TX time for device i: T0_i+n*I_real_i

I_real_i from device i is determined during observation phase

Note that I_real_i can also take into account pkt collisions that are resolved with some kind of backoff procedure

Synchronizing devices <-> relay

- ATMega328P (8bit, 8MHz, 32K flash, 2K RAM)
- Available deep sleep durations with internal watchdog timer
 - [8, 4, 2, 1] seconds, [500, 250, 120, 60, 30, 15] milliseconds
 - Use multiple deep sleep cycles of [8, 4, 2, 1]s
 - Last 1000ms do not use deep sleep mode
- Each deep sleep cycle adds time overhead
 - Take into account the cycle time overhead
- Without RTC, external timers are disabled during deep sleep
 - No "absolute" time available
 - Need to re-adjust all stored timestamps at each wake up
 - Before deep sleep -> T1wake up
 - After deep sleep -> T2wake up
 - Re-adjust by T2wake_up T1wake_up

(HAZIU (LACTH

- Continuous receive: 15mA, Deep sleep: 5uA, Transmit: 40mA
- For an observation phase of 1 hour
 - Continuous receive (2s) and relay/transmit uplink messages (2s)
 - Ex: 8 msg in 1h (4 devices, assuming 2msg/device/hour)

● ((8*2s)*40mA+(3600s-8*2s)*15mA)/3600s = 15.11mA

1h of observation consumes1/165th of the battery capacity

- In forwarding phase
 - Each wake up introduces about 2s of continuous receive followed by 2s of transmission (like previously)
 - (2s*15mA+2s*40mA)/4s = 27.5mA for each wake up
 - for 8 uplink msg (8*4s*27.5mA+ (3600s-8*4s)*0.005mA)/3600s=0.250mA
 - 414 days of operation
- We considered 2s to receive and 2s to transmit
- When considering only 1s for receiving and 1s for transmission, the lifetime is greatly increased
- Depending on terrain configuration, LoS conditions,... smaller spreading factor values can be used instead

 Using smaller spreading factor greatly decreases the time on air, but decrease receiver 's sensibility!

ge				time on air in second for payload size of							
ility/Ran	LoRa mode	RW/	SF	5 hytes	25 bytes	55 bytes	105 bytes	155 Bytes	205 Bytes	255 Bytes	max thoughput (2558
dubrouuSensib	1	125	12	0.9585	1.6138	2.5969	4.2353	5.8737	7.5121	9.1505	223
	2	250	12	0.4792	0.8069	1.2165	1.8/19	2.5272	3.2645	3.9199	520
	3	125	10	0.2806	0.4854	0.6902	1.0998	1.5094	1.919	2.3286	876
	4	500	12	0.2396	0.4035	0.6083	0.9359	1.2636	1.6323	1.9599	1041
	5	250	10	0.1403	0.2427	0.3451	0.5499	0.7547	0.9595	1.1643	1752
	6	500	11	0.1198	0.2222	0.3041	0.5089	0.6932	0.8776	1.0619	1921
	7	250	9	0.0701	0.1316	0.1828	0.2954	0.4081	0.5207	0.6333	3221
	8	500	9	0.0351	0.0658	0.0914	0.1477	0.204	0.2604	0.3167	6442
	9	500	8	0.0175	0.0355	0.0508	0.0815	0.1148	0.1455	0.1788	11408
	10	500	7	0.0088	0.0203	0.028	0.0459	0.0638	0.083	0.1009	20212
Ę											

Transmitting: TC/22.5/HUM/67.7; about 20 bytes with packet header Time on air is 1.44s

- In Europe, duty-cycle imposes a maximum of 36s/hour of transmission for a device. The relay is considered a device
- Assuming 1msg/device/hour and 1s for receiving and 1s for transmission then the relay can support 36 devices
- How to increase the number of devices?
 - Decrease spreading factor OK, but not always possible
 - Decrease #msg per device/hour depend on the application
 - Do not forward every message how to select which packet to forward?
- We are investigating similarity detection in relay node to detect "similar" devices
 - "similar" devices means their measures are considered "similar"
 - Relay node can decide to forward only 1 pkt from a set of similar devices
 - Can still use encryption but relay needs to be able to decrypt

- 1-hop to gateway can be challenging in real-world, rural LoRa deployment
- 2-hop LoRa will provide much higher flexibility in deployment
- Using CAD approach can be very unreliable
- We demonstrate the feasibility of a 2-hop relay node based on very low-cost hardware
 - No additional hardware (hard design choice)
 - Observation phase to schedule future wake up
 - Can handle packet collision if observation phase >> sensing period
 - Just-in-time wake up in data forwarding phase
 - Relay can keep synchronization with devices
 - Low-energy consumption
- Embedded similarity detection mechanism under study