
End-to-End QoS on Shared Clouds for Highly
Dynamic, Large-Scale Sensing Data Streams

Rafael Tolosana-Calasanz, José Ángel Bañares
Aragón Institute of Engineering Research (I3A)

University of Zaragoza, Spain
rafaelt@unizar.es,banares@unizar.es

Congduc Pham
LIUPPA Laboratory

University of Pau, France
congduc.pham@univ-pau.fr

Omer Rana
School of Computer Science & Informatics

Cardiff University, United Kingdom
o.f.rana@cs.cardiff.ac.uk

Abstract—The increasing deployment of sensor network infras-
tructures has led to large volumes of data becoming available,
leading to new challenges in storing, processing and transmitting
such data. This is especially true when data from multiple sensors
is pre-processed prior to delivery to users. Where such data
is processed in-transit (i.e. from data capture to delivery to a
user) over a shared distributed computing infrastructure, it is
necessary to provide some Quality of Service (QoS) guarantees
to each user. We propose an architecture for supporting QoS for
multiple concurrent scientific workflow data streams being pro-
cessed (prior to delivery to a user) over a shared infrastructure.
We consider such an infrastructure to be composed of a number
of nodes, each of which has multiple processing units and data
buffers. We utilize the “token bucket” model for regulating, on
a per workflow stream basis, the data injection rate into such
a node. We subsequently demonstrate how a streaming pipeline,
with intermediate data size variation (inflation/deflation), can be
supported and managed using a dynamic control strategy at each
node. Such a strategy supports end-to-end QoS with variations
in data size between the various nodes involved in the workflow
enactment process.

I. INTRODUCTION

Sensor nodes, which consist of sensing, data processing and
communicating components, leverage the idea of (wireless)
sensor networks (WSN) based on a collaborative effort of
a large number of nodes. These sensors have the unique
capability to interact with the physical world making possible
the monitoring and control of actions to be performed on the
real world. Fig. 1 depicts such a global scenario where various
heterogeneous surveillance & monitoring systems could be
connected together to form a global sensing infrastructure for
collecting, sharing and analyzing a huge amount of data in
order to take proper coordinated actions.

Once data from monitoring sensors has been acquired, it
must be pre-processed and distributed to a number of users.
For instance, in the context of environment monitoring, the
same data may need to be: (i) summarized; (ii) fused with other
data; (iii) enhanced with geo-location and access rights, prior
to delivery to a given user (such as a government laboratory,
a researcher in climate studies, etc) – thereby leading to
data “inflation” (for (ii) and (iii)) or “deflation” (for (i)). An
infrastructure that enables the same data to be processed in
various ways, in-transit, prior to delivery to a group of users
(with each user having a different data requirement) remains
an important challenge. As data are collected continuously

Fig. 1. From pervasive systems to global sensing.

at sensors, intermediate resources must be allocated to store
and process these data streams in a scalable manner. In [1],
we highlighted the need for supporting Quality of Service
(QoS) enforcement mechanisms, so that the requirements of
the different applications being executed on the same shared
Cloud infrastructure can be met. This is especially true for ap-
plications that must stream data through analysis processes [2]
and undertake in-transit analysis from data source to sink.
In such a scenario, each application workflow instance must
be isolated from another and for the underlying coordination
mechanism to adapt the infrastructure to either: (i) run all
instances without violating their particular QoS constraints; or
(ii) indicate that, given current resources, a particular instance
cannot be accepted for execution.

We propose a system architecture which enforces QoS, mea-
sured exclusively in terms of throughput, for the simultaneous
execution of multiple workflows over a shared, in-transit, data
processing infrastructure. We then consider a “data acceptance
rate”, different from the physical link capacity connecting
two processing stages, to support admission control. Fig. 2
depicts this architecture, where it is assumed that the network
bandwidth for data transfer is not the bottleneck in the system.
We assume a workflow is composed of a sequence of stages
and datasets are transmitted through the stages following the
pipeline streaming model of computation[3]. Each workflow
stage is mapped to a node in the infrastructure, though a node



can enact more than one workflow stage. The token bucket
(TB) model [4] is used to regulate on a per-stream basis the
input (data injection rate) of each workflow stage (regulation
element in Fig. 2). The purpose is to prevent one workflow
stream from affecting the QoS properties (mainly throughput)
of another by monopolizing computing resources.

Fig. 2. Shared infrastructure with regulation element per flow

This paper extends [1] to address large-scale sensor-based
data streams. In addition to a variable data injection rate from
the sensing infrastructure, data inflation/deflation phenomenon
may occur at various stages of the workflow system. Data
inflation implies that an intermediate node generates a much
greater amount of data than it consumes (opposite behavior
for data deflation). Therefore, it is mandatory to efficiently
manage data inflation/deflation within a streaming workflow
to strictly ensure that QoS targets can be met for each stream
on an end-to-end basis. An a priori knowledge of these data
size variations is typically application and dataset dependent
and difficult to estimate. It is therefore necessary, in the more
general case, to identify how data size impacts buffer sizes, the
number of computing resources required and the number of
concurrent streams that can co-exist at a node. The latter two of
these are tunable parameters that can be adjusted dynamically
in our proposed model.

Our key contribution in this work is to add a dynamic
control strategy at each node to provide dynamic resource
utilisation per node by featuring a TB component with au-
tonomic parameter tuning. Using this approach, each node is
able to self-regulate its behaviour as the intermediate data size
changes dynamically. The remainder of this paper is structured
as follows. Section II reviews enforcement techniques based
on the TB model and presents our architecture. Section III
introduces data inflation/deflation and the impact this has on
our control strategy. We explain the challenges due to data
inflation/deflation on the TB configuration. Section IV presents
our evaluation scenario and the simulation results. In Sec-
tion V, related work is briefly discussed. Finally, conclusions
and future work are given in Section VI.

II. ENFORCING QOS IN SUPERSCALAR PIPELINES

A. Enforcing QoS with Token Bucket model

In our system, the TB model is integrated within an in-
frastructure node, enacting one or more workflow stages. A
TB is characterized by 3 parameters: b, R and C that are
respectively the size of the bucket, the token generation rate
and the maximum line/processing capacity. The TB model

supports a variable data rate and burstiness while enforcing
a predefined (negotiated) mean data acceptance rate. In our
architecture, a TB stores data elements from a stream and
forwards them to the computational phase of a workflow
stage at a predefined rate. This technique represents a flexible
mechanism for traffic characterization and enforcement and
enables isolation of workflow streams.

B. Workflow System Architecture for enforcing QoS
The architecture proposed in [1] allows multiple workflows,

each having different QoS requirements, to be supported
by a workflow enactment engine. We assume that i) data
transmissions required for meeting QoS, on average, do not
exceed the network bandwidth available, and ii) the required
computations on average do not exceed the computational
power of the resources available. In order to keep the abstract
workflow independent of the resources used to subsequently
enact it, a workflow stage needs to be mapped to one or
more nodes, and for the sake of simplicity, this is arranged
by the user, rather than by a scheduler. Accordingly, nodes
can offer different services and are allowed to perform more
than one workflow task and may have multiple computing
resources available. As depicted in Fig. 3, the mechanisms
for enforcing QoS and avoiding data loss are: i) a TB(one
per workflow stream), ii) a processing unit (PU), which is a
computing resource container where the number of resources
it contains can be modified on-demand, and iii) an Autonomic
Data Streaming Service (ADSS), which handles transmission
of data to the following node in the infrastructure. It should be
observed that there is an input buffer before each component.

Fig. 3. Workflow System Architecture: the elements of a node

The TB regulates the entrance to the PU, isolates the rates
of different data streams, while enforcing QoS and avoiding a
data stream starvation. At a PU computation is performed by
utilizing multiple resources in parallel. Resources can be added
to or removed from the PU at runtime. At the output of each
workflow stage, we make use of the ADSS [5] for submission
of data to a subsequent node. The ADSS can detect a network
congestion between two nodes and react to it by reducing the
data transmission rate over the network and temporarily storing
data onto disk (thereby avoiding data loss).

III. DATA INFLATION/DEFLATION ISSUES

We assume that the proposed architecture is attempting to
enforce the end-to-end throughput (the primary QoS criteria



we consider here) for each workflow stream. Hence, for each
workflow stage, it is necessary to identify the data storage and
processing requirements – derived from the overall throughput
requirement of the workflow. These requirements are subse-
quently used to identify the size of buffers and computing
resources needed per node. We assume that these requirements
are either known by the user enacting the workflow or derived
from prior runs of the workflow (and refer to these as the
Service Level Agreement (SLA) established with each node).
However, what may not be known is whether for a particular
combination of inputs and data sources a large amount of
output data may be generated at a workflow stage (leading
to data inflation). Conversely, data deflation at a node may
lead to an inefficient use of available resources.

A. Data inflation/deflation issues on token bucket

The challenging issues of data inflation/deflation are sum-
marized in Fig. 4 that illustrates the various steps starting
from SLA negotiation based on the application’s data injection
rate (step 1). For simplicity, the figure only shows one flow
instance. Step 2 involves instantiating the flow’s token bucket
parameters at each workflow stage using the initial b and R
parameters. Steps 3 and 4 show how incoming data get pro-
cessed by the first stage leading to data inflation. Subsequently,
step 5 identifies the impact on a subsequent workflow stage,
where the rate is limited by the token bucket parameters of
the stage. This may lead to either data loss or an inability to
meet an application’s end-to-end QoS.

Fig. 4. Example of data inflation at the 2nd stage and detailed self-configuring
component.

Pre-defined values of b,R and C cannot overcome effects of
data inflation/deflation on resource management or workflow
QoS. It is therefore necessary to identify a strategy for altering
the processing rate at each node to avoid large buffer overflow

or large queue sizes. In consequence, it is mandatory to
identify the parameters that can be adjusted at a node based
on the computing resources available at the PU, and the data
injection rate into the node. The bottom of Fig. 4 shows the
control loop to configure the R parameter and the number
of resources for each flow instance. For simplicity, the figure
shows the regulation of one flow instance.

Each flow instance monitors its input and output rates at
each stage at a pre-defined sampling rate (magnifying glass
(a) in the figure). Using this initial data, the control strategy
is initiated, subsequently recording the input queue buffer
occupancy (b), the number of resources in use at the PU (c),
and the bandwidth available to transmit data (d).

At each node, the size of each input buffer is chosen in
accordance with the agreed requirements of the workflows. For
example, the maximum resources by stage limits the maximum
processing rate, and therefore the maximum input rate to the
next stage. The controller must estimate the buffer size during
execution. For example, with an input rate of 100 tokens/s
and a buffer size of 2000 tokens, the buffer will be full in 20
seconds. A sampling rate of 10 seconds would be sufficient to
control the number of resources and change the output rate if
the resources can be deployed in less than 10 seconds.

Depending on the applications’ behaviours, i.e. showing
signs of burstiness for a period of time, the input buffer
capacity can vary. Choosing a threshold for the buffer oc-
cupancy can be challenging when heterogeneous applications
are being run concurrently. In case the chosen threshold is
too high, there is a risk of data loss, when the control loop
mechanisms cannot manage to reduce the buffer occupancy.
On the other hand, a too low threshold value may lead
to inefficient use of resources. When the input buffer size
reaches an established threshold, this triggers the controller
to initiate one of two possible actions: i) calculate the number
of additional resources at the PU needed (based on those
available) to process the additional data items generated above
rate R. ii) if there are free resources (not being used by other
workflow instances), they can be used to increase the R rate
of flow associated with this instance. The amount of resources
and the rate value will return to their previously agreed values
when the input buffer size goes below the threshold. The
regulatory actions taken by the controller are implemented by
a rule engine. SLAs may be implemented as rules that control
the number of resources and the output rate.

B. Integration into a workflow framework

Our approach uses the Reference net formalism [6] to
specify the workflows and the engine to enact them [1].
Reference nets is a particular class of high-level Petri net that
uses Java as an inscription language and extends Petri nets with
dynamic net instances, so-called net references, and dynamic
transition synchronization through synchronous channels.

Our abstract workflows can have a hierarchical structure
consisting of either intermediate nodes or leaf nodes (simple
tasks). Fig. 5 shows two abstract workflows, Wf1 and Wf2, to
be enacted. These workflows represent pipelines as a sequence



Fig. 5. Autonomic self-configuring component to regulate the stream processing rate at each stage

of operations to process data streams. Elements within a data
stream are represented as tokens flowing through the pipeline.
Reference nets support different representations [7]: tokens
that store remote locations of distributed files, or express
structured collections of data. A more detailed description of
workflow specification with reference nets can be found in [1].

To enact these workflow specifications we use the super-
scalar pipeline [3] model of computation, whereby multiple
data elements can be processed in parallel within a workflow
stage as long as there are enough available resources. Once
multiple workflow instances are created, the workflow engine
will use the nets described in Fig. 5 to coordinate their
execution. The upper part of Fig. 5 shows three workflow
stages s1, s2, s3 represented by three nodes. The Reference
net for each stage is then explained in the lower part of
the figure (we use the terms node and stage interchangeably,
as one stage of the workflow maps to one physical node in
the enactment process). A node at this level consists of two
transitions and a place. Two consecutive nodes, ni followed by
ni+1, share one transition: the final transition of ni is the initial
transition of ni+1. Transitions labelled as ij are responsible
for creating and initialising nodes: the parameters specified in
the creational inscription new node(opList, res, bufS) are
from left to right the list of operations that the resources at
the node can perform, the initial number of resources and the
buffer size of the PU.

At enactment time, multiple data elements from differ-
ent workflows are streamed into the PU, introduced one
by one at the initial transition via Synchronous Channel
: inputData([d,wf ]). Pairs in the form [d,wf ], where d is a
data element that belongs to wf ’s data stream, are introduced
in Transition t1. d stores either the data itself or a reference
to the data element, and wf is a reference to a net instance
of Workflow wf . The pair [d,wf ] goes through the sequence
of nodes and finishes the processing in Transition t4.

Each node contains three different components: a token
bucket manager, a PU and an ADSS. When a pair [d,wf ]

enters into the node, it arrives at the token bucket manager
component (Transition t1). Then, whenever the corresponding
token bucket allows the data element to proceed, it enters
into the PU. Finally, after the processing, it goes to the final
stage which corresponds to the ADSS. Upon completion of the
transmission, a data element gets out of the node and enters
into the next node (Transition t4). Fig. 5 shows how each
place of the node net references the corresponding TBMng, PU
and ADSS net instances. Transitions tb1, tb2 are Synchronous
Channels and allow TBMng net to claim or release more
resources at the PU for this stage by synchronizing with
transitions u1, u2.

Details about the PU net, patterns utilised to map a workflow
task to a distributed resource and the ADSS net can be
found in [5]. This paper focuses on the description of the
Token Bucket Manager, represented by the TBMng net, and
the control loop that regulates the token bucket rate and the
number of resources of each workflow instance at each stage.

The Reference net in the upper right part of Fig. 6 imple-
ments a token bucket which receives data elements arriving
in input Transition and leaving at output Transition. Once
a data element enters into the bucket it is stored in the bf
buffer, implemented in this case as a FIFO list, in Place
DataBuffer. The output Transition is only enabled when
there are simultaneously an element in the buffer and a mark
in Place TokenBucket. A mark in Place TokenBucket will
be added by the clock in the bottom right part of the figure
at the rate R. Thus, irrespective of the arrival rate of data
elements into the token bucket from previous stages, they will
only be allowed to proceed to the PU at a constant rate of R.
Transition : update(R) modifies the parameter R.

The Reference net on the left part of Fig. 6 implements
the token bucket manager component. The upper part of the
net forwards incoming data elements to the corresponding
token bucket. Each time a data element is injected in a data
stream, a reference to the data stream with the agreed values
(b, R) arrives in Transition t1. If it is the first data element



Fig. 6. Token Bucket net and Token Bucket Manager with control loop

of the stream, Transition t3 will be enabled and Transition
t2 disabled. Otherwise, Transition t2 will be enabled and
Transition t3 disabled. In the former case, the new token
bucket instance for the data stream will be created in Transition
t5, and the data element will be added to it when Transition
t6 fires. In the latter case, the data element will be added to its
corresponding tokenbucket instance when Transition t4 fires.
Finally, once a data element is allowed to proceed, Transition
t7 is fired and the data element moves to the PU component
via Synchronous Channel : end(sw) in Transition t7.

The bottom part of the net with grey background is the
control loop. A rule engine is instantiated at each stage in
transition t9. At a sampling rate defined for each workflow
instance, a control loop evaluates the actions to be taken and
Transition t10 initiates this control loop. We implemented the
rule engine with JESS (Java Expert System Shell). Configura-
tion data such as SLA information are provided by Transiton
t3 and Transition t11 will insert information about available
resources (computing and bandwidth) at this stage. Transition
t12 executes the rule engine by providing information (input
rate, buffer occupancy, etc) to the rule engine as described
in Fig. 6. Transition t13 will issue a control flag indicating
whether it is necessary to modify the token bucket rate or
to add/remove resources to/from the PU, or both actions.
Transitions t14 and t15 change the number of resources at the
PU. These channels synchronize with tb1 and tb2 and regulate
the number of resources in the PU net. Finally, Transition t16
(synchronized with t10) changes the rate of the token bucket
regulating the throttling rate of the workflow at this stage.

IV. EVALUATION SCENARIO

We examine the effectiveness of the token bucket manager
control loop, considering use cases found in a number of real

world applications, such as stream processing for Smart Grid
[8] and LEAD [2] (in environmental data management). To
illustrate the key ideas, we abstract these applications to a
scenario in which two workflows wf1 and wf2 are executed
simultaneously over two shared nodes. They have respectively
an average arrival rate and a required throughput of 20 and
10 data values/s. They have also negotiated respectively an
upper average arrival rate R1=30 and R2=15 data values/s.
Each PU component in a node (as illustrated in Fig. 3)
initially contains 5 identical resources. The average time for
an operation depends on the network bandwidth, the number
of resources available, the data size, etc. We assume that
each resource can process 10 data values/s. Therefore, the
overall processing capacity at each node is 50 data values/s,
which is 5 data values/s more than the total sum of the
upper average processing rate of both workflow instances.
For simplicity, the processing time is also assumed to be the
same for each datum. Otherwise, a variable processing rate
will only produce throughput variations that are equivalent to
data inflation/deflation. We assume that the network bandwidth
between nodes is enough for meeting the QoS requirements.
The ADSS can transmit at the rate of 300 tokens/s in our
evaluation scenario.

The token bucket size b is set to 20 tokens, that is, during
any time period T, the amount of data sent cannot exceed
RT + b. The data buffer size is set to 100 times the token
bucket size to avoid buffer overflow in our evaluation scenario
(see Fig. 6). We will conduct two evaluation scenarios. In the
first one, we will consider the use of token buckets only at
the first processing node, and we will examine the effect of
data inflation and adaptation of resources over the next nodes
without the token bucket mechanism. In the second scenario
we will consider token buckets in all nodes and the use of



different SLA adaptation agreements.
1) Data inflation with rate and resource adaptation only

at the first node: The impact on workflow throughput when
adapting the number of PUs and the rate of token bucket
R is illustrated here. For this propose, the control loop is
introduced in the token buckets. The adaptation of resources
may be part of a more flexible SLA that may alleviate temporal
burstiness, and reduce the size of data buffers. We examine
the evolution of throughput when using only adaptive token
buckets to regulate the input rate.

In this evaluation scenario data elements are sent to each
workflow at the aforementioned rates (20 data values/s for wf1

and 10 for wf2), except between time 60s and 140s where
wf1 sends data at a rate of 100 data values/s. wf1 has an
SLA that supports adaptation by adding more resources and
by modifying the token bucket rate R at the input node.

Fig. 9 depicts the adaptation of throttling the data rate to
the first node. Wf1 can introduce 10 additional resources.
In this case, it increases R, introduces 6 processing units to
absorb the additional input rate, and processes data with a
throughput of 90 tokens/s. When the input buffer is emptied,
the processing units are returned to the pool and the throttling
rate is returned to the initial value. A data inflation is also
simulated at 360s at the first stage of wf1 to show its effect
on wf2. Fig. 10 illustrates how the token buckets at the first
stage isolate the throughput of wf2 at the first stage. However,
Fig. 11 and 12 show that a single token bucket to throttle
data at the input is insufficient. Indeed, a first starvation is
produced by the adaptation at the first stage. Fig. 11 shows
that the adaptation and the simulated data inflation at the first
stage produce data inflations at the second stage, which has
not token bucket to shape input rates. Fig. 12 shows that it
produces two starvations in wf2 at the second stage .

2) Self-Adaptative Stage with different SLAs: The adaptive
token bucket component is evaluated here. In this scenario,
wf1 has an SLA that seeks adaptation by adding more
resources, and modifying the token bucket rate R at each stage.
In contrast, wf2 has an SLA that allows only adapting the
token bucket rate R using the free resources. Fig. 13 illustrates
the results. The first graph shows the input rate for wf1. A
violation of rate is produced at 60s. The fourth graph shows the
input rate for wf2 with a violation at 600s. The second graph
illustrates wf1’s throughput at the first stage, regulated by the
token bucket throttling: the first small peak is caused by the
allowed burstiness. As the violation persists, the second peak
shows how the flexible SLA allows the addition of 6 resources,
and the throttling rate is increased until 90 tokens/s. The 3rd

peak of 200 tokens/s is produced to simulate a data inflation.
The third graph shows how the first violation at the input is
solved at the second stage of wf1 by the token bucket without
additional resources, and the data inflation at the second stage
introduces additional resources at the second stage of wf1 until
the input buffer of the second stage is emptied.

The fifth and sixth graphs show that all these adaptations of
wf1 do not affect wf2. The fourth graph depicts an input rate
violation of wf2. The SLA of wf2 only supports the use of free

resources. The fifth graph shows how the first stage increases
the rate until 20 tokens/s (5 tokens/s over the initial R of 15
tokens/s). When the buffer is emptied, R returns to the initial
value and the throughput returns to 10 tokens/s provided by the
input rate. The sixth graph illustrates that it is not necessary
to provide adaptations to R for wf2 at the second stage.

V. RELATED WORK

Park and Humphrey [9], make use of a token bucket-based
data throttling framework for scientific workflows that involve
large data transfers between tasks. In contrast to the data
parallelism model of computation of Park and Humphrey, we
use a superscalar pipeline to enforce the QoS of multiple
workflow instances in a shared infrastructure.

Various workflow systems are currently used for scientific
applications – such as Triana [10], Kepler [11], [12] and
Taverna [13] (amongst many others [14]) – both of which
support a data streaming pipeline. In Triana, the streaming
model is used by default, and Triana units can be either
Web Services or Java executables. Kepler provides a more
customisable control management strategy, where a “director”
can be used to alter the control flow between components
in the workflow. Taverna has recently undergone a radical
re-design of the architecture, referred to as Taverna 2 [15].
This new architecture also supports superscalar and streaming
pipelining as a model of computation: a producer processor
forwards each element as soon as possible to the corresponding
consumer processor in the pipeline. In the consumer processor,
multiple elements can be processed in parallel as there are
multiple threads available (superscalar).

VI. CONCLUSIONS AND FUTURE WORK

Global sensing infrastructures based on large-scale deploy-
ment of sensor technology introduce challenging issues for
advanced management and processing of continuous data
streams. In this paper we propose Cloud technology as a
scalable and economically viable solution for heterogeneous
surveillance & monitoring systems that present extremely high
dynamics in data patterns and processing requirements. We
use Token Bucket envelop process to enable running multiple
workflow instances over a shared Cloud infrastructure while
providing each workflow with a particular QoS requirement.
We add a control strategy at each workflow stage to dynam-
ically adjust Token Bucket parameters to adapt the available
resources in order to provide QoS on an end-to-end basis, so
that variations in data size (data inflation/deflation) between
stages can be self-configured by the application. We then use
the Reference net formalism to both specify the workflows
and provide the engine to enact them, therefore proposing
a seamless integration of QoS mechanisms for the end-user.
Simulations have shown the effectiveness of the approach on
test cases inspired by real global sensing applications.

Our future work involves better understanding the relation-
ship between data types, dynamic resource provisioning and
admission control of a workflow instance. Another aspect to
consider is the adaptive capacity of Token Bucket parameters



Fig. 7. Wf1 input with burstiness Fig. 8. Wf2 input rate

Fig. 9. Wf1 throughput at 1st stage with adaptation and
inflation

Fig. 10. Wf2 throughput at 1st stage

Fig. 11. Wf1 throughput at 2nd stage without TB Fig. 12. Wf2 throughput at 2nd stage suffering inflation and
burstiness

(such as its queue size) [16]. Finally, burstiness introduces
a new elastic way to define an SLA for an application to be
executed over a shared environment with a mean data injection
rate. Data without tokens can be marked or dropped, implying
that depending on the application, data can be marked to be
lost, to be not processed at this stage, or to be stored in the
ADSS node and forwarded to be processed off-line.

REFERENCES

[1] R. Tolosana, J. Banares, C. Pham, and O. Rana, “Enforcing qos in
scientific workflow systems enacted over cloud infrastructures,” Journal
of Computer and System Sciences, 2012.

[2] S. Marru, D. Gannon, S. Nadella, P. Beckman, D. B. Weber, K. A.
Brewster, and K. K. Droegemeier, “Lead cyberinfrastructure to track
real-time storms using spruce urgent computing,” CTWatch Quarterly,
vol. 4(1), 2008.

[3] C. Pautasso and G. Alonso, “Parallel computing patterns for Grid
workflows,” in Proceedings of the HPDC2006 Workshop on Workflows in

Support of Large-Scale Science (WORKS06) June 19-23, Paris, France,
2006.

[4] C. Partridge, Gigabit Networking. Addison-Wesley, 1994.
[5] R. Tolosana-Calasanz, J. A. Bañares, and O. F. Rana, “Autonomic

streaming pipeline for scientific workflows,” Concurr. Comput. : Pract.
Exper., vol. 23, no. 16, pp. 1868–1892, 2011.

[6] O. Kummer, Referenznetze. Berlin: Logos Verlag, 2002.
[7] D. Zinn, Q. Hart, T. McPhillips, B. Ludaescher, Y. Simmhan, M. Gi-

akkoupis, and V. K. Prasanna, “Towards reliable, performant workflows
for streaming-applications on cloud platforms,” in 11st International
Symposium on Cluster, Cloud and Grid Computing (CCGrid 2011), May
2011, Newport Beach, USA, 2011.

[8] Y. Simmhan, B. Cao, M. Giakkoupis, and V. K. Prasanna, “Adaptive rate
stream processing for smart grid applications on clouds,” in Proceedings
of the 2nd international workshop on Scientific cloud computing, ser.
ScienceCloud ’11. New York, NY, USA: ACM, 2011, pp. 33–38.
[Online]. Available: http://doi.acm.org/10.1145/1996109.1996116

[9] S.-M. Park and M. Humphrey, “Data throttling for data-intensive
workflows,” in 22nd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, Miami, Florida USA, April 14-18,
2008. IEEE, 2008, pp. 1–11.



Fig. 13. Throughput rate with self-configuring control and TB at each stage.

[10] I. Taylor, M. Shields, I. Wang, and A. Harrison, Workflows for eScience.
Springer, 2007, ch. The Triana Workflow Environment: Architecture and
Applications, pp. 320–339.

[11] T. M. McPhillips and S. Bowers, “An approach for pipelining nested
collections in scientific workflows,” SIGMOD Record, vol. 34, no. 3,
pp. 12–17, 2005.

[12] D. Zinn, S. Bowers, S. Köhler, and B. Ludäscher, “Parallelizing XML
data-streaming workflows via MapReduce,” Journal of Computer and
System Sciences, no. To appear, 2010.

[13] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock,
M. Senger, R. Stevens, A. Wipat, and C. Wroe, “Taverna: lessons in
creating a workflow environment for the life sciences: Research articles,”

Concurr. Comput. : Pract. Exper., vol. 18, no. 10, pp. 1067–1100, 2006.
[14] D. Gannon, E. Deelman, M. Shields, and I. Taylor, Workflows for

eScience. Springer, 2007, ch. Introduction, pp. 1–9.
[15] P. Missier, S. Soiland-Reyes, S. Owen, W. Tan, A. Nenadic, I. Dun-

lop, A. Williams, T. Oinn, and C. A. Goble, “Taverna, reloaded,” in
Scientific and Statistical Database Management, 22nd International
Conference, SSDBM 2010, Heidelberg, Germany, June 30 - July 2, 2010.
Proceedings, ser. Lecture Notes in Computer Science, M. Gertz and
B. Ludäscher, Eds., vol. 6187. Springer, 2010, pp. 471–481.

[16] Y.-C. Chen and X. Xu, “An adaptive buffer allocation mechanism for
token bucket flow control,” in Vehicular Technology Conference, 2004.
VTC2004-Fall. 2004 IEEE 60th, vol. 4, sept. 2004, pp. 3020 – 3024
Vol. 4.


