WIRELESS SENSOR NETWORKS AND THEIR APPLICATIONS

MATSUNO LAB SEMINAR NOVEMBER 9TH, 2011 KYOTO UNIVERSITY

PROF. CONGDUC PHAM

HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

WIRELESS AUTONOMOUS SENSOR

IN GENERAL: LOW COST, LOW POWER (THE BATTERY MAY NOT BE REPLACEABLE), SMALL SIZE, PRONE TO FAILURE, POSSIBLY DISPOSABLE

 ROLE: SENSING, DATA PROCESSING, COMMUNICATION
Sedia Transceiver

Autonomous sensors and RFID tag can be embedded in various structures or objects of our daily life to enhance localization, tracking and information collection.

SENSING

...TO DIGITAL SOCIETY...

PERVASIVE SYSTEMS

SENSING

...TO UBIQUITOUS WORLD...

EX: SMART ELECTRICITY NETWORKS

EX: SMART ELECTRICITY NETWORKS

Yogesh Simmhan, Baohua Cao, Michail Giakkoupis, and Viktor K. Prasanna. Adaptive rate stream processing for smart grid applications on clouds. In Proceedings of the 2nd ACM international workshop on Scientific cloud computing (ScienceCloud '11).

Monitoring/Surveillance

SEARCH&RESCUE, SECURITY

Imote2

Multimedia board

CROSSBOW MOTES OF OUR TESTBED

iMote2 with IMB400 multimedia board

LIBELIUM WASPMOTE (1)

THE FULL TESTBED

CUSTOM BEHAVIOR

20

AIR QUALITY MONITORING

SPECIFIC APPLICATIONS

TOWARDS GLOBAL SENSING

23

WHERE CLOUDS COME IN!

REVIEW OF COMMUNICATION ARCHITECTURE

MULTI-HOP PACKET FORWARDING

ENERGY VS LATENCY

PROACTIVE?

- MAINTAIN & UPDATE ROUTING TABLE INDEPENDENTLY OF COMMUNICATION NEEDS
- PERIODICAL UPDATES
- SAME PHILOSOPHY THAN IN WIRED-NETWORKS (RIP, OSPF)
- □ LOW LATENCY
- WASTE » BANDWIDTH AND ENERGY
- REACTIVE, ON-DEMAND?
 - ON-THE-FLY DISCOVERY OF ROUTES, WHEN COMMUNICATION NEEDS APPEAR
 - SAVE BANDWIDTH AND ENERGY
 - HIGHER LATENCY
 - GENERALLY EFFICIENT AT LOW LOAD
- HYBRID?
 - PROACTIVE OR REACTIVE DEPENDING ON THE DISTANCE

FLAT VS HIERARCHICAL

□ FLAT ROUTING?

SIMPLE

□ NOT SCALABLE!

HIERARCHICAL ROUTING?

MORE EFFICIENT

« LEADERS » ELECTION OVERHEAD

MOBILITY COST

MULTIPLE HIERARCHY LEVELS ARE POSSIBLE

- GEOGRAPHICAL ROUTING?
 - □ GPS-AIDED FOR INSTANCE
 - EFFICIENT ROUTING TOWARDS THE DESTINATIONS
 - GEOGRAPHICAL INFORMATION ARE PROPAGATED USING FLOODING

On-demand multi-hop routing illustrated: AODV example

RREQ

AODV (Example)

⊷··· Reverse Path Setup 33

AODV (Example)

AODV (Example) F J В D (**P**) **G** \mathbf{c} S (T) Z

AODV (Example) A F J В P **G** \mathbf{c} S E H *----- **I**+---- **T** Ζ RREP

AODV (Example) F J B Ρ G S C E

AODV (Example) Y F..... J B Ρ S

AODV (Example) **y**) F..... J.----B Ρ S

QUITE HIGH IN LARGE NETWORKS!

FUNNELING EFFECT

MANY-TO-ONE TRAFFIC PATTERN CAUSES CONGESTION IN THE ROUTING FUNNEL

ENERGY EFFICIENT ROUTING

CONTEXT-AWARE ROUTING

APPLICATION-SPECIFIC ROUTING, CROSS-LAYERED ROUTING

REVIEW OF COMMUNICATION ARCHITECTURE

WIRELESS MEDIUM IS A SHARED MEDIUM

Collisions when multiple transmissions

Hidden terminal problem

WiFi transmission power is too energyconsuming for WSN!

Huge cost of passive listening!

WSN can be idle for a long period!

S-MAC - SENSOR MAC

NODES PERIODICALLY SLEEP

- TRADES ENERGY EFFICIENCY FOR LOWER THROUGHPUT AND HIGHER LATENCY
- SLEEP DURING OTHER NODES TRANSMISSIONS

	Listen	Sleep	Listen	Sleep	t
--	--------	-------	--------	-------	---

T-MAC - TIMEOUT MAC

- TRANSMIT ALL MESSAGES IN BURSTS OF VARIABLE LENGTH AND SLEEP BETWEEN BURSTS
- RTS / CTS / ACK SCHEME
- SYNCHRONIZATION SIMILAR TO S-MAC

B-MAC

 LOW POWER LISTENING (LPL) USING PREAMBLE SAMPLING

 HIDDEN TERMINAL AND MULTI-PACKET MECHANISMS NOT
PROVIDED, SHOULD BE
IMPLEMENTED, IF NEEDED, BY
HIGHER LAYERS

CHALLENGES FOR MAC PROTOCOLS IN WSN

ENERGY EFFICIENCY LOW LATENCIES FAIRNESS

A CHALLENGE FOR MISSION-CRITICAL APPLICATION

CRITICALITY AND RISK-BASED SCHEDULING

BASIC APPROACH: PM2HW2N/ACM MSWIN 2009 CURRENT APPROACH: IEEE WCNC2010 WITH INTRUSION DETECTION RESULTS: IEEE RIVF2010 WITH RE-INFORCEMENT: IEEE ICDCN2011 JOURNAL PAPER IN JNCA, ELSEVIER

DON'T MISS IMPORTANT EVENTS!

WHOLE UNDERSTANDING OF THE SCENE IS WRONG!!!

WHAT IS CAPTURED

HOW TO MEET SURVEILLANCE APP'S CRITICALITY

CAPTURE SPEED CAN BE A « QUALITY » PARAMETER

CAPTURE SPEED FOR NODE V SHOULD DEPEND ON THE APP'S CRITICALITY AND ON THE LEVEL OF REDUNDANCY FOR NODE V

V'S CAPTURE SPEED CAN INCREASE WHEN AS V HAS MORE NODES COVERING ITS OWN FOV - COVER SET

CRITICALITY MODEL (2)

- R^o CAN VARY IN [0,1]
- BEHAVIOR FUNCTIONS (BV) DEFINES THE CAPTURE SPEED ACCORDING TO R⁰
- **R**^o < 0.5
 - □ CONCAVE SHAPE BV
- **R**^o > 0.5

□ CONVEX SHAPE BV

WE PROPOSE TO USE BEZIER CURVES TO MODEL BV FUNCTIONS

MEAN STEALTH TIME

T₁-T₀ IS THE INTRUDER'S STEALTH TIME VELOCITY IS SET TO 5M/S

DYNAMIC SCHEDULING

RESEARCH DIRECTIONS AT LIUPPA - ROUTING

USE CROSS-LAYER INFORMATION (APP→ ROUTING & ROUTING→ APP) TO OPTIMIZE COVERSET SELECTION & ROUTE SELECTION FOR SURVEILLANCE APPS

60

RESEARCH DIRECTIONS AT LIUPPA - MAC

FOCUSES ON MISSION-CRITICAL APPLICATIONS (E.G INTRUSION DETECTION)

- PROVIDE LOW-LATENCY MAC LAYER
- USE THE CRITICALITY MODEL TO SET SCHEDULES OF NODES

SENSOR & ROBOTS

WIRELESS SENSOR NETWORKS

LARGE SCALE SENSING

NATURAL COLLABORATION THOUGH DATA AGGREGATION, REPORTING, ...

☐ MOBILITY IS NOT A PRIORITY

ROBOTS

□ MOBILITY IS A FUNDAMENTAL FEATURE

EXPLORATION, RESCUE

SENSOR & ROBOTS

□ WSN PROVIDE SENSING DATA TO ROBOTS

□ ROBOTS MAINTAIN CONNECTIVITY

SENSORS COULD HELP FOR LOCALIZATION WHEN GPS DATA ARE DOWN

RESCUE COULD BE OPERATED IN SEVERAL PHASES (1)

Deploy in mass a WSN to get a first snapshot of the situation: images, radiation level, targets,...

RESCUE COULD BE OPERATED IN SEVERAL PHASES (2)

Based on collected data, optimize deployment/ selection of autonomous robots

RESCUE COULD BE OPERATED IN SEVERAL PHASES (3)

Robots could serve as relay or install communication gateways to maintain WSN connectivity and increase data storage capability

RESCUE COULD BE OPERATED IN SEVERAL PHASES (4)

Sensor & Robots will contineously collaborate during the rescue process: localization, path optimization, remote sensing,...

CONCLUSIONS

 SENSOR NETWORKS CAN PROVIDE LARGE SCALE AWARENESS
SENSORS & ROBOTS INTERACTIONS ARE CHALLENGING BUT PROMISING ISSUES
COMPLEMENTARY

TECHNOLOGIES FOR MISSION-CRITICAL APPLICATIONS

SHORT TERM ISSUES (1)

COMMUNICATION LAYERS ARE VERY IMPORTANT FOR WSN USE SPECIFIC SIMULATOR

SHORT TERM ISSUES (2)

MOBILITY, CONTROL AND DESIGN ARE VERY IMPORTANT FOR ROBOTS USE SPECIFIC SIMULATOR

SENSORS & ROBOTS ENABLE INTERACTION

L Sensor specific simulator for communication stack

SENSORS & ROBOTS PROPOSE NEW INTERACTION SCHEMES

USE THE CRITICALITY MODEL TO CONTROL BOTH SENSORS AND ROBOTS

PROTOTYPING ON REAL HARDWARE

