New Internet and Networking Technologies and Their Application on Computational Sciences

COSCI 2004

Dai Hoc Bach Khoa, Ho Chi Minh City, Vietnam, March 3, 2004

C. Pham University Lyon, France LIP (CNRS-INRIA-ENS-UCBL)

Computational Sciences

Use of computers to solve complex problems

Modelling techniques

Simulation tehniques

Analytic & Mathematic methods

•

Large problems require huge amount of processing power: supercomputers, highperformance clusters, etc.

Earth simulator: #1 TOP500

©JAMSTEC

Intensive numerical simulations □Ex: Super High Resolution Global Atmospheric Simulation

A large variety of applications

Mechanics: Fluid dynamic, CAD, simulation.

High-Energy Physics: Fundamental particles of matter, Mass studies...

Chemistry&biology: Molecular simulations, Genomic simulations...

This talk is about...

How the Internet revolution could be beneficial to computational sciences

The big-bang of the Internet

Internet host

www.web-the-big-bang.org

The Internet in Vietnam

Year	2000	2001	2002	oct2003
Subscribers	103,751	166,616	350,000	650,654
Users	430,000	700,000	1.4 mil	2.6 mil
Penetration rate	0.5%	0.9%	1.7%	3.2%

Internet usage: e-mail...

- Convenient way to communicate in an informal manner
- Attachments as a easy way to exchange data files, images...

🔊 🖂 👌 🖓 🚺 🛛 Done loading page

...and surfing the web

- A true revolution for rapid access to information
- Increasing number of apps:
 - 🖵 e-science,
 - e-commerce, B2B, B2C,
 - e-training, elearning,
 - 🖵 e-tourism

Towards all IP

From Jim Kurose

A whole new world for IP

The optical revolution

Demand: about 111 million km of cabled optical fiber / year

DWDM, bandwidth for free?

DWDM: Dense Wavelength Division Multiplexing

The information highways

1600 Gbyte/s

Revisiting the truck of tapes

(18 of 18)

Consider one fiber

- Current technology allows for 320 λ in one of the frequency bands
- Each λ has a bandwidth of 40 Gbit/s
- Transport: 320 * 40*10⁹ / 8 = 1600 GByte/sec
- Take a 10 metric ton truck
- One tape contains 50 Gbyte, weights 100 gr
- Truck contains (10000 / 0.1) * 50 Gbyte = 5 PByte
- Truck / fiber = 5 PByte / 1600 GByte/sec = 3125 s ≈ one hour
- For distances further away than a truck drives in one hour (50 km) minus loading and handling 100000 tapes the fiber wins!!!

Fibers everywhere?

High Performance Routers

Operator's infrastructure

- Backbones are optical: OC48 (2.5Gbps), OC192 (10Gbps), OC768 (40Gbps) soon
- New technologies deployed by operators, POPs available worldwide

New applications on the information highways

Think about...

video-conferencing
video-on-demand
interactive TV programs
remote archival systems
tele-medecine
virtual reality, immersion systems
high-performance computing, grids
distributed interactive simulations

Computational grids

High Energy Physics at CERN

Images from EDG (DataGrid) project

3.5 Petabytes/year $\approx 10^9$ events/year

Distributed Databases

Limitations of the current Internet

🖵 Bandwidth

Raw bandwidth is not a problem: DWDM

Provisioning bandwidth on demand is more problematic

Latency

Mean latencies on Internet is about 80-160ms

Bounding latencies or ensuring lower latencies is a problem

Loss rate

Loss rate in backbone is very low

- End-to-End loss rates, at the edge of access networks are much higher
- Communication models
 - Only unicast communications are well-defined: UDP, TCP
 - Multi-parties communication models are slow to be deployed

New technologies addressed in this talk

 More Quality of Service: Differentiated Services, who pays more gets more!
 Bandwidth provisioning: MPLS for virtual circuit in the core networks
 Multicast: enhancing the communication model

Revisiting the *same service for all* paradigm

Service Differentiation

The real question is to choose which packets shall be dropped. The first definition of differential service is something like "not mine." -- Christian Huitema

Differentiated services provide a way to specify the relative priority of packets
 Some data is more important than other
 People who pay for better service get it!

Divide traffic into classes

Design Goals/Challenges

- Ability to charge differently for different services
- □No per flow state or per flow signaling
- All policy decisions made at network boundaries
 - Boundary routers implement policy decisions by tagging packets with appropriate priority tag
- Traffic policing at network boundaries
- Deploy incrementally, then evolve
 - Build simple system at first, expand if needed in future

Traffic Conditioning

Differentiated Architecture

Pre-defined PHB

Expedited Forwarding (EF, premium):

- departure rate of packets from a class equals or exceeds a specified rate (logical link with a minimum guaranteed rate)
- Emulates leased-line behavior

Assured Forwarding (AF):

- 4 classes, each guaranteed a minimum amount of bandwidth and buffering; each with three drop preference partitions
- Emulates frame-relay behavior

Premium Service Example

Fixed Bandwidth

source Gordon Schaffee

Assured Service Example

source Gordon Schaffee

Border Router Functionality

source Gordon Schaffee, modified by C. Pham

Internal Router Functionality

Should scale to millions of flows

source Gordon Schaffee, modified by C. Pham

DiffServ for grids

DiffServ for grids (con't)

Bandwidth provisioning

N E W C H A P T E R

DWDM-based optical fibers have made bandwidth very cheap in the backbone

- On the other hand, dynamic provisioning is difficult because of the complexity of the
 - network control plane:
 - Distinct technologies
 - Many protocols layersMany control software

Provider's view

Today's setting time is several weeks/months! We want to set dynamic links within hours

Back to virtual circuits

Virtual circuit explained

Why virtual circuit?

Initially to speed up router forwarding tasks: X.25, Frame Relay, ATM.

We're fast

enough!

Now: Virtual circuits for bandwidth provisioning!

MPLS

 Multi-Protocol Label Switching
 Fast: use label switching > LSR
 Multi-Protocol: above link layer, below network layer
 Facilitate traffic engineering

LINK

MPLS operation

switching

Source Yi Lin, modified C. Pham

Forwarding Equivalent Class: high-level forwarding criteria

Forwarding Equivalent Class

MPLS & VPN

- Virtual Private Networks: build a secure, confidential communication on a public network infrastructure using routing, encryption technologies and controlled accesses
- MPLS reduces VPN complexity by reducing routing information needed at provider's routers

MP λ S: MPLS+optical

Towards IP/MPLS/DWDM

From cisco

Ex: MPLS circuits on grids

Unicast, the current (Internet) communication model

There are applications that naturally need multi-destination communication model

Collaborative works

- □ Visio-conferencing
- Software distribution

□Video-on-Demand

□Virtual Reality

Distributed Simulation

From unicast to multicast

Multicast in example

The user's perspective

Multicast address group 224.2.0.1

IP multicast TODO list

- Receivers must be able to subscribe to groups, need group management facilities
- A communication tree must be built from the source to the receivers
- Branching points in the tree must keep multicast state information
- Inter-domain routing must be reconsidered for multicast traffic
- Need to consider non-multicast clouds

Ex: Reliable multicast on grids

Data replications

Code & data transfers, interactive job submissions

Data communications for distributed applications (collective & gather operations, sync. barrier)

Databases, directories services

Multicast address group 224.2.0.1

Conclusions

 There's a lot more technologies going on that have impact on computational science
 Pure optical networks, broadband wireless
 Peer-to-Peer, Overlays
 Web services...

The future will be all connected, all IP, anytime, anywhere, for more...

...fun in computational sciences!!

