LOW-POWER, LONG-RANGE WAN FOR IOT: A TECHNOLOGY OVERVIEW

RESCOM, LILLE

LAST UPDATE: 12TH JANUARY, 2015

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

LOT/WSN DEPLOYMENT MADE EASIER IN SINGLE-HOP MODEL

ENERGY-RANGE DILEMMA

Enhanced from M. Dohler "M2M in SmartCities"

HOW COSTLY IS TRANSMISSION?

Technology	2G	3G	LAN
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m
Tx current consumption	200mA- 500mA	500mA – 1000mA	50mA
Standby current	2.3mA	3.5mA	NC

and the second se	
+ +	TX power: 500mA
	P = I x V = 500 x 3.3 = 1650mW
ACELL ACELL	E = P x t -> t = E/P
18720 JOULES	11345s or 3h9mins

Technology	2G	3G	LAN
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m
Tx current consumption	200mA- 500mA	500mA – 1000mA	50mA
Standby current	2.3mA	3.5mA	NC

Haven't considered:

- Baseline power consumption of the sensor board
- RX consumption!
- Event capture consumption
- Event processing consumption

- Low-power radio in the 2.4GHz band offering 250kbps throughput at physical layer
- Power transmission from 1mW to 100mW for range from 100m to about 1km is LOS
- CSMA/CA
- BPSK, used as physical layer
 in ZigBee

CALLER AND A SUBSCREEK	ないでも、	a series and	Section States	-	MEL MEL	
	0				+ +	TX power 0dbm: 17.4mA
		OXYC				P = I x V = 17.4 x 3.3 = 57.42mW
		NO.			ACELL	E = P x t -> t = E/P
	sa [1872	20 JOULES	326018s or 90.5h
GG2420	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RE RF ansceiver				Haven't considered: - Baseline power consumption of
Chipcon Products from Texas Instrumen	ts				<i>GG2420</i>	- RX consumption: 18.8mA!
Parameter	Min.	Тур.	Max.	Unit	Condition / Note	 Event capture consumption
Current Consumption, transmit mode:						 Event processing consumption
P = -25 dBm P = -15 dBm		8.5 9.9		mA mA	The output power is delivered differentially to a 50 Ω singled	
P = -10 dBm P = -5 dBm		11 14		mA mA	ended load through a balun, see also page 55.	
P = 0 dBm		17.4		mA		

15 YEARS OF MULTI-HOP ROUTING?

ACADEMICS VS INDUSTRIES LET'S GO BACK TO REALITY!

Millions of sensors, self-organizing, selfconfiguring, with QoS-based multipath routing, mobility, and ... 500 sensors, STATIC deployment, but need to have RELIABILITY, GUARANTEED LATENCY for monitoring and alerting. MUST run for 3 YEARS. No fancy stuff! CAN I HAVE IT?

From Peng Zeng & Qin Wang

9

TYPICAL SCENARIOS

LOW-POWER AND LONG-RANGE?

LINK BUDGET OF LPWAN

SIMPLE LOSS IN SIGNAL STRENGTH MODEL

15

LINK BUDGET EXAMPLE

- Received Power (dBm) = Transmitted Power (dBm) + Gains (dB) - Losses (dB)
 dBm - power referred to 1 mW
- **Example**
 - Transmitted power is +14dBm (25mw)
 - Losses (FSPL) is 120dB (received power is 10¹² less than transmitted power)
 - □ Then Receiver Power (dBm) is -106dBm
- If you have a receiver sensitivity of -137dBm you can handle FSPL up to 151dB, i.e. 1.15x10¹⁵ less power than transmitted power!
- Rewriting the equation
 - □ Losses (dB) = Transmitted Power (dBm) Received Power (dBm)
 - Losses = link budget & Received Power = max receiver sensitivity
 - □ Link budget = Transmitted Power max receiver sensitivity
 - □ 151dB=14dBm (-137dBm)

- יווכ	power	releffed	i U	•	

P_{dBm}=10log(P/1mW)

LINK BUDGET EXAMPLE

INCREASING RANGE?

- Generally, robustness and sensitivity can be increased when transmitting (much) slower
- A[Sigfox message is sent relatively slowly in a very narrow band of spectrum (hence ultranarrow-band) using Gaussian Frequency-Shift Keying modulation]
- LoRa also increases time-on-air when maximum range is needed. But LoRa uses spread spectrum instead of UNB

WHY THE LPWAN REVOLUTION?

VERSATILE LPWAN!

Rural areas

Underground

Indoor

Pinit

EXTREME LONG-RANGE!

UK HAB (High Altitude Ballooning) trials gave 2 way LoRa[™] coverage at up to 240 km. Lowering the data rate from 1000bps to 100bps should allow coverage all the way to the radio horizon, which is perhaps 600 km at the typical 6000-8000m soaring altitude of these balloons. Balloon tracking can be made

WHAT ABOUT THE THROUGHPUT?

-1

0

2

3

SIGFOX

Sigfox uses ultranarrow band (UNB) of about 100Hz with GMSK (~BPSK)

Typical throughput is about 100bps

Devices can typically send up to 140 messages of 12bytes per day (operator limits) LoRa modulation is more versatile, using CSS variant

LoRa

Sensitivity and throughput depend on 3 LoRa parameters: BW (bandwidth), CR (coding rate) and SF (spreading factor)

Throughput range is 240bps to 37500bps

WHAT ABOUT THE THROUGHPUT?

LORA'S PARAMETERS

Parameters

$$R_{b} = SF * \frac{Rate Code}{\left[\frac{2^{SF}}{BW}\right]} bits/sec$$

Bandwidth: 62.5kHz, 125kHz, 250kHz, 500kHz

□ Rate code: 4/4+CR (CR=1, 2, 3, 4)

□ Spreading factor: 6 to 12

Sensitivity: lowest input power with acceptable link quality, typically 1% PER

SpreadingFactor (RegModemConfig2)	Spreading Factor (Chips / symbol)	LoRa Demodulator SNR
6	64	-5 dB
7	128	-7.5 dB
8	256	-10 dB
9	512	-12.5 dB
10	1024	-15 dB
11	2048	-17.5 dB
12	4096	-20 dB

Bandwidth (kHz)	Spreading Factor	Nominal Rb (bps)	Sensitivity (dBm)
125	6	9380	-122
125	12	293	-137
250	6	18750	-119
250	12	586	-134
500	6	3750	-116
500	12	1172	-131

Rule of thumb					
6dB increase = twice the	Bandwidth (kHz)	Spreading Factor	Coding rate	Nominal Rb (bps)	Sensitivity (dBm)
range in LOS	125	12	4/5	293	-136
12dB needed for urban areas	250	12	4/5	586	-133
	500	12	4/5	1172	-130

TIME ON AIR FOR VARIOUS LORA SETTINGS

					time on air in second for payload size of						
	LoRa						105	155	205	255	
) Jge	mode	BW	CR	SF	5 bytes	55 bytes	bytes	Bytes	Bytes	Bytes	
Rar	1	125	4/5	12	0.95846	2.59686	4.23526	5.87366	7.51206	9.15046	
	2	250	4/5	12	0.47923	1.21651	1.87187	2.52723	3.26451	3.91987	
	3	125	4/5	10	0.28058	0.69018	1.09978	1.50938	1.91898	2.32858	
	4	500	4/5	12	0.23962	0.60826	0.93594	1.26362	1.63226	1.95994	
	5	250	4/5	10	0.14029	0.34509	0.54989	0.75469	0.95949	1.16429	
	6	500	4/5	11	0.11981	0.30413	0.50893	0.69325	0.87757	1.06189	
	7	250	4/5	9	0.07014	0.18278	0.29542	0.40806	0.5207	0.63334	
	8	500	4/5	9	0.03507	0.09139	0.14771	0.20403	0.26035	0.31667	
_	9	500	4/5	8	0.01754	0.05082	0.08154	0.11482	0.14554	0.17882	
	10	500	4/5	7	0.00877	0.02797	0.04589	0.06381	0.08301	0.10093	
lybr											
put											

LORA VS SIGFOX

Usual (ultra) narrow-band (UNB) vs spread spectrum (SS) arguments

UNB has lower in-band receive noise and SigFox can have more channels than LoRa

But UNB needs tighter receiver synchronization and more complex signal processing at receiver (SigFox uses advanced SDR at receiver to analyse the total band)

SS can more rapidly be saturated so LoRa may have more interference issues in dense environments

From networking guys perspective, LoRa is more versatile with possibility to build ad-hoc mesh networks

SOME SIGFOX RADIO MODULES

SOME READY-TO-USE SIGFOX DEVICES

Prog. Micro USB

Snootlab Akeru is Arduino-like

SigFox ready sensor by ATIM

DC connector (2.1mm)

Sens'it from Axible Technologies

SigFox demonstrator by Adeunis

HidNSeek

Universal push button from Bttn Inc

LORA MODULES FROM SEMTECH'S SX127X CHIPS

DORJI DRF1278DM is based on Semtech SX1278 LoRa 433MHz

HopeRF RFM series

Multi-Tech

MultiConnect mDot

LinkLabs

Symphony module

AMIHO AM093

IMST IM880A-L is based on Semtech SX1272 LoRa 863-870 MHz for Europe

inAir9 based on

SX1276

Embit LoRa

ARM-Nano N8 LoRa module from ATIM

SODAQ LoRaBee Embit

Froggy Factory LoRa module (Arduino)

LoRa[™] Long-Range Sub-GHz Module (Part # RN2483)

SODAQ LoRaBee RN2483 30

LORA MODULES FROM SEMTECH'S SX127X CHIPS

Libelium LoRa is based on Semtech SX1272 LoRa 863-870 MHz for Europe

LoRa[®] Transceivers

	Part Number	Frequency Range (MHz)	Link Budget (dB)	Rx Current (mA)	FSK max DR (kbps)	LoRa DR (kbps)	Max Sensitivity (dBm)	Tx Power (dBm)	а
	SX1272	860 - 1020	158	10	300	0.3 - 37.5	-137	+ 20	
	SX1273	860 - 1020	150	10	300	1.7 - 37.5	-130	+ 20	•
	SX1276	137 - 1020	168	9.9	300	0.018 - 37.5	-148	+ 20	
RF	SX1277	137 - 1020	158	9.9	300	1.7 - 37.5	-139	+ 20	
se	SX1278	137 – 525	168	9.9	300	0.018 - 37.5	-148	+ 20	Module

habSupplies

AMIHO AM093

Adeunis ARF8030AA- Lo868

ARM-Nano N8 LoRa module from ATIM

SODAQ LoRaBee Embit

Microship RN2483

SODAQ LoRaBee RN2483 31

SIGFOX'S MODEL FOR M2M: THE PERATOR » (ALL-IN-ONE) APPROACH

..vs PRIVATE LONG RANGE NETWORKS WITH LORA

Add LoRa radio module to your preferred dev platform

Install a LoRa gateway and start collecting data

LORA GATEWAYS (NON EXHAUSTIVE LIST)

GATEWAYS/BS = CLOUD

OTHER LONG-RANGE TECHNOLOGIES

	LoRa	NWave	OnRamp	Platanus	SIGFOX	Telensa	Weightless -N	Weightless -P	Amber Wireless	M2M Spectrum
Range (km) (Caveat)	15-45 flat; 15-22 suburban; 3-8 urban	10	4 (but claims 25x competition)	Several hundred meters	50 rural; 10 urban	Up to 8	5+	2+ urban	Up to 20	
Band (MHz)	Spread; varies by region	Sub-GHz	2.4 GHz	Sub-GHz	868;902	868/915 470 (China)	Sub-GHz	Sub-GHz	434, 868, 2.4 GHz	800/900
ISM?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Symmetric up/down?	No	No	No (4:1)	No	No	Yes	Uplink only	Not yet determined		
Data rate (Caveat)	0.3-50 kbps (adaptive)						م	00 ve)	Up to 500 kbps**	
Max nodes	Depends; 200K-300K/hub	M VVAVIC ^{b∉} LOS, ´	10-15km ui	rban	m (oukm	WC		claim "it Is")	255 networks of 255 nodes	
OTA upgrades?	Yes	Ye								
Handoff?	No; no node/hub association	No; it's being considered	Yes	Yes	Doubtful	Yes	Yes	Yes		
Operational model	Public or private (expect 80% public)	Public or private	Public or private	Public or private	Public	Public	Public or private	Public or private		Public
Standard status (if any)	No	Weightless-N	IEEE; in process	Weightless-P	No	No (perhaps in future)	Yes	In process; spec later this <u>yr</u>		

Source: Bryon Moyer, "Low Power, Wide Area A Survey of Longer-Range IoT Wireless Protocols," *Electronic Engineering Journal, Sept. 2015.*

LICENSE-FREE SUB-GHZ CONSTRAINTS

- Shared medium so long-range transmission in dense environments can create lots of interference!
- Activity time is constrained from 0.1%, 1% 10% duty-cycle depending on frequency: 3.6s, 36s/hour to 360s/hour

Band	Edge Frequencies		Field / Power	Spectrum Access	Band Width
	Fe- Fe+				
g(Note 7)	865 MHz	868 MHz	+6.2 dBm /100 kHz	1 % or LBT AFA	3 MHz
g(Note 7)	865 MHz	870 MHz	-0.8 dBm / 100 kHz	0.1% or LBT AFA	5 MHz
g1	868 MHz	868.6	14 dBm	1 % or LBT AFA	600 kHz
g2	868.7 MHz	869.2 MHz	14 dBm	0.1% or LBT AFA	500 kHz
g3	869.4 MHz	869.65 MHz	27 dBm	10 % or LBT AFA	250 kHz
g4	869.7 MHz	870 MHz	7 dBm	No requirement	300 kHz
g4	869.7 MHz	870 MHz	14 dBm	1 % or LBT AFA	300 kHz

For SigFox, the operator typically limits the number of messages per day (140) with penalty for over usage. e.g. new messages/ day = 140 – (2 * « #msg_overuse») applied during «#msg_overuse» days

Listen Before Talk and Adaptive Frequency Agility can relax the duty-cycle constraints...

🗅 ... but still

100s / hour on every 200kHz BW
 no more than 1s for a single transmission 88

□ ... so may not be that interesting!

- Using the g3 band, 10% duty cycle can be achieved for the gateway on the downlink
- However, handling ACKs for a large number of devices is not possible
- SigFox uses repeatition

- LoRa uses coding gain (with the coding rate) and spread spectrum higher immunity to interferences
- ACKs may be reserved for critical transactions

((**1**)) M2M **7** layers StrrNet libelium Laird LACROIX ACN ALFLEX. **Contributor members** LORIO T Lyngsoe m2öcity Adeunis ALPWISE FastNet ESPOTEL MCS mct ANDREA MEDRIA Technologie Sponsor members muRata **Nable** Communication miromico AT4 gemalto arkessa FLASHNET Antibard Mathematical Mathematical Co. NEMEUS actility AUGTEK bouygues \bigcirc nke Neptun Light, Inc BETTSCHEN braveridge **A** ManThink members indeta Inmarsat nuri occammd CIRSUIT DESIGN.INC. CommuniThings S ComVision B.V. ENDETEC IBM HOMERIDER SYSTEMS **CISCO** Contela Contela, Inc d Oi Electric Co.,Ltd. On Yield Inc Ltd OMNIMPEX d.m.i.c Z **X LACE** LinkLabs M LA POSTE Adopter pr. 总 基联无限 EasyLinkin EDITAG TELKOMSEL EDF ker**link** 🚵 kpn PRIVA ЖеL.MD. < elecsys effectas MULTITECH M2B Communications Planning 1. (EI rakon MICROCHIP M2M ELSYS.se enevo éolane proXimus QO'WISIO senet RFTech _____ my Devices **OrbiWise** RoyalTek RTLS ESS ispher SEMTECH Sagemcom $\widehat{\mathbf{R}}$ RTX Schneider stream SK telecom eee EXPEMB FINSECU RISINGHE swisscom seas-nve 🜔 SENSING O LABS SERCO/M (今东日信息技术 Ext of Technology Future Electronics GIMASI SNEF Goobie Vision GlobalSa GoldCard 2 + Silicon Control \bigcirc GORKE PARU X SF gupsy SRETT Solvera Lynx O Hub One

HON HAI PRECISION

Innovation Vision F2

55 INSIGMA

SYNOPSYS'

TTA

clickey

TalkPool

erromicron

telent

TE MAN

telog

WHAT IS LORAWAN?

LORAWAN CHANNELS

EU 863-870MHz ISM Band

DataRate	Configuration	Indicative physical bit rate [bit/s]	1	TXPower	Configuration
0	LoRa: SF12 / 125 kHz	250		0	20 dBm (if
					supported)
1	LoRa: SF11 / 125 kHz	440		1	14 dBm
2	LoRa: SF10 / 125 kHz	980		2	11 dBm
3	LoRa: SF9 / 125 kHz	1760		3	8 dBm
4	LoRa: SF8 / 125 kHz	3125		4	5 dBm
5	LoRa: SF7 / 125 kHz	5470		5	2 dBm
6	LoRa: SF7 / 250 kHz	11000		615	RFU
7	FSK: 50 kbps	50000			
815	RFU				

Table 14: Data rate and TX power table

Minimum set

Modulation	Bandwidth [kHz]	Channel Frequency [MHz]	FSK Bitrate or LoRa DR / Bitrate	Nb Channels	Duty cycle
LoRa	125	868.10 868.30 868.50	DR0 to DR5 / 0.3-5 kbps	3	<1%

WILL MAIN MARKET BE OPERATOR BASED?

...COMMUNITY BASED?

OR FROM LOCAL ACTORS?

Irrigation

Livestock farming

Fish farming & aquaculture

Storage & logistic

Agriculture

Fresh water

WHAT ABOUT QUALITY OF SERVICE?

Regulations stipulate that radio activity duty-cycle should be enforced at devices and that end-users should not be able to modify it « easily ».

LoRaWAN specification from LoRa Alliance is a first attempt to standardize LoRa networks but no issues on quality of service.

ONG-RANGE VERSION OF. OUR IMAGE SENSOR

ESVE

INGS

00(

WHAT IF I WANT TO TRANSMIT **IMAGES?**

					time on air in second for payload size of					
	LoRa						105	155	205	255
	mode	BW	CR	SF	5 bytes	55 bytes	bytes	Bytes	Bytes	Bytes
	1	125	4/5	12	0.95846	2.59686	4.23526	5.87366	7.51206	9.15046
٦	2	250	4/5	12	0.47923	1.21651	1.87187	2.52723	3.26451	3.91987
	3	125	4/5	10	0.28058	0.69018	1.09978	1.50938	1.91898	2.32858
	4	500	4/5	12	0.23962	0.60826	0.93594	1.26362	1.63226	1.95994
٦	5	250	4/5	10	0.14029	0.34509	0.54989	0.75469	0.95949	1.16429
	6	500	4/5	11	0.11981	0.30413	0.50893	0.69325	0.87757	1.06189
	7	250	4/5	9	0.07014	0.18278	0.29542	0.40806	0.5207	0.63334
	8	500	4/5	9	0.03507	0.09139	0.14771	0.20403	0.26035	0.31667
	9	500	4/5	8	0.01754	0.05082	0.08154	0.11482	0.14554	0.17882
	10	500	4/5	7	0.00877	0.02797	0.04589	0.06381	0.08301	0.10093

Optimized image encoding at medium quality: 16384b down to 1366b (ratio 12).

Will generate 7 pkts using 250 max payload

7*9.15= 64.05s

7*1.96 = 13.72s

LONG-RANGE ACTIVITY SHARING (LAS)

A device can transmit more if needed, provided that other devices will decrease their radio activity time accordingly.

57

DISTRIBUTING REMOTE ACTIVITY TIME USAGE

OTHER ISSUES TO TAKE INTO

ACCOUNT

- Minimise the number of UPDT messages sent by the gateway because the gateway's radio time is also limited
 - UPDT can have cumulative behavior if no remote activity time has been used
- Support sleep periods of end-devices
 - The network is synchronized for control messages (REG, INIT, UPDT). UPDT msg that can not use cumulative behavior are queued for transmission at next transmission slot. At rcv, UPDT have to be applied sequentially.
- Maintain (loose) synchronization
 - □ If no UDPT are scheduled, the gateway periodically sends a BEACON. Clock drift is limited to a BEACON period
- Dynamic insertion of new end-devices
 - New devices can either stay out of the managed pool (then only 36s of activity time/h is allowed), or join by waiting for the next UPDT/BEACON msg
 - Every hour, end-devices decide if they want to join the pool or not
- Give priority to control msg
 - □ SIFS/DIFS mechanism are implemented using LoRa Channel Activity Detection
- Avoid interleaving of several image transmissions
 - □ Use DIFS for first image packet, then SIFS
- Improve LoRa network efficiency
 - Move from pure ALOHA to CSMA mechanism with CAD+RSSI tests prior to any transmission

MPLEMENTATION AVAILABLE

A Spinsonge - weak The fait line top	pi@raspberr × pi@raspberr ×
<image/>	<pre>Didraspherryni content of the local state is py thenparsetoFasteln.py Fower ON: state O Channel CH_10_868: state 0 Power M: state 0 Get Preamble Length: state 0 Preamble Length: 8 LoRa addr 1 : state 0 SX1272 configured as LR-BS. Waiting RF input for transparent RF-serial bridge WLASBase::ON WLASBase::CON WLASBase::Con the local strend of the local state is 10 WLASBase::Con the local strend of the local state is 10 WLASBase::Con seq=7 len=10 SNR=7 RSSIpkt=-62 rev ctrl pkt info: 10,7,10,7,-62 splitted in: [10, 7, 10, 7, -62] (src=10 seq=7 len=10 SNR=7 RSSI=-62) WLASBase::DATA msg WLASBase::DATA msg WLASBase::DATA msg WLASBase::con find device hello WLASBase::dev_table index 0 WLASBase::dev_table index 0 WLASBase::con find device hello WLASBase::con find device hello WLASBASE:</pre>
	¹⁷ LASDevice::LoRa Sent w/CAD in 916 ¹⁷ Packet sent, state 0

SENDING MESSAGE UNDER

CREEKEEBEEREEEEEEEEEEEEEEEEEEEEEEE

LAS SERVICES

61

DEVELOPPING COUNTRIES

WAZIUP is an EU H2020 project (2016-2019)
 contributes to long-range networks for rural applications with WP2

DESIGN AND ADAPTATION

- Build low-cost, low-power, Long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

DESIGN AND ADAPTATION

- Build low-cost, low-power, Long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

LESS THAN 50€

LESS THAN 50€

CONCLUSIONS

- Low-power, long-range (LR) transmission is a break-through technology for IoT and large-scale deployment of wireless (sensor) devices
- With a large variety of applications, products & actors the low-power WAN (LPWAN) eco-system is becoming mature
- New technologies will certainly emerge but the LPWAN « philosophy » is now settled firmly: out-of-the-box connectivity is now the standard.
- Is multi-hop routing for low-power device still interesting in the IoT domain?
- Mostly driven by industrials, research & development around long-range technologies should also attract the academic research community