

EAR-IT network qualification

Qualify and Benchmark Test-beds for Acoustics in Deployment of Targeted Applications

RESSACS 2013, UBO C. Pham, LIUPPA, University of Pau & EGM

UNINOVA

100

无端暂感星际科技有限公司 SmortSensingStors

CDT

SmartSantander test-bed

SmartSantander IoT node

the sounds of smart environments IMAGES ARE FROM LIBELIUM COMPANY

HobNet test-bed at UNIGE

MSP430F1611 microcontroller 8Mhz, 48K flash, 10K RAM 2.4GHz IEEE 802.15.4 CC2420

Purpose of network qualification

- What we have
 - Mesh configuration of IoT and gateways
 - IoT nodes rely on IEEE 802.15.4 radio
 - Radio modules are Xbee from Digi
- What we want to know
 - Upper bounds on sending and receiving throughput
 - Performances in a networked environment
 - Impact of API on performances
 - Where are the limitations?
 - To what extend audio traffic can be supported?

_

- Phase 1
 - Determine upper bounds on performances of a single IoT node

Qualification phase 1

 Determine upper bounds on performances of multi-hop transmissions

• Phase 2

Performances in a networked environment: node density, traffic loads

Qualification phase 2

- Use representive locations in Santander for on-site test campaigns
- Deploy on IoT nodes traffic generators & sniffers
- Use mobile traffic generators & sniffers for dynamic traffic patterns
- Throughput, packet losses, latency,...

Node qualification: WaspMote (1

SEVENTH FRAMEWORK

the sounds of smart environments QUALIFICATION DONE IN THE CONTEXT OF THE EAR-IT PROJECT

Technology comparison

LIBELIUM WASPMOTE

ARDUINO MEGA2560

XBEE 802.15.4

XBEE DIGIMESH

Node qualification: AdvanticSys

Multi-Hop Packet Forwarding?

SEVENTH FRA

the sounds of smart environments FROM EAR-IT PROJECT

Multi-hop audio test-bed

SEVENTH FRA

Multi-hop overheads

Fully configurable: File to send Size of packet chunk Inter-packet delay Image/Binary mode Destination node Clock synchronization

the sounds of smart environments

EAR-

Relay nodes

Fully configurable:

Destination node Additional relay delay Clock synchronization

LIBELIUM WASPMOTE

Sink node

LINUX PC/LAPTOP WITH USB/SERIAL GATEWAY

Audio encoding

- Need a really low rate audio encoding scheme
- PCM is 64kbps, GSM 6.1 is 13kbps, can be lowered to 6kbps
- We use an open-source codec
 - codec2: <u>http://codec2.org</u>
 - Can be as low as 1400bps (1600, 2400 and 3400bps available)
 - All encoding/decoding tools are available in code source
 - Encoded file is robust against packet losses

Can we meet the constraints?

SEVENTH FRAMEWOR PROGRAMME

Test on SmartSantander

1-hop results

1-relay scenario									
bit rate	1400bps			2400bps			3200bps		
pkt size	40	50	60	40	50	60	40	50	60
n_{pkt}	59	47	39	101	81	67	134	108	90
t_{pkt}	105	110	120	105	110	120	105	110	120
n_{lost}	8	6	7	6	5	5	8	9	8
t_{pkt}	110	120	125	110	120	125	110	120	125
n_{lost}	1	0	0	0	2	2	3	1	3
t_s , s	6.5	5.6	4.8	11.1	9.7	8.3	14.7	14.4	11.2
t_{rcv}	6.9	6.4	5.2	11.6	10.1	8.8	15.4	15	11.7
t_{play}	4.7	4.5	3.7	8.4	8.2	6.1	13.1	12.8	9.8

Conclusions

- Receiver throughput is low and a maximum of 8kbps can be achieved without packet losses
- Low bit rate codecs for voices can be streamed from source to gateway provided that contention on radio links is low
- Multi-source is challenging

