VIDEOSENSE: A SIMULATION MODEL OF IMAGE SENSORS UNDER OMNET++/CASTALIA

RESSACS 2012 JUNE, 7 TH, 2012 IUT BAYONNE, ANGLET

PROF. CONGDUC PHAM

HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

VIDEOSENSE: UN MODÈLE DE SIMULATION DE CAPTEURS VIDÉO SOUS OMNET++/CASTALIA

JOURNÉE RESSACS 2012 7 JUIN, 2012 IUT BAYONNE, ANGLET

PROF. CONGDUC PHAM http://www.univ-pau.fr/~cpham

UNIVERSITÉ DE PAU, FRANCE

SEARCH & RESCUE

Imote2

Multimedia board

NODE'S COVER SET

 $|\mathbf{Co}(\mathbf{V})| = 7$

4

ACTIVITY DETECTION

GET IMAGES FROM DEPLOYED SENSORS

SIMULATION ENVIRONMENT

OMNET++

UNDERLYING SIMULATION FRAMEWORK, USE VERSION 4.1

Many packages for simulating IP, mobile, wireless, adhoc,...

C++ based

Graphic interface

CASTALIA

BAN AND WSN MODELS ON TOP OF OMNET++

DEFINES WIRELESS ENVIRONMENT & SENSOR NODE ARCHITECTURE

VIDEOSENSOR MODEL (1)

VIDEOSENSOR MODEL (2)

MANY PARAMETERS CAN BE CHANGED WITHOUT RECOMPILING (OMNETPP.INI FILE) COMPILATION FLAGS ARE USED FOR SELECTING SOME GLOBAL BEHAVIORS

COVERSET COMPUTATION

FINDING V'S COVER SET

AoV=31°

 $P = \{v \in N(V) : v \text{ covers the point "p" of the FoV} \}$ $B = \{v \in N(V) : v \text{ covers the point "b" of the FoV} \}$ $C = \{v \in N(V) : v \text{ covers the point "c" of the FoV} \}$ $G = \{v \in N(V) : v \text{ covers the point "g" of the FoV} \}$

 $PG=\{P \cap G\}$ $BG=\{B \cap G\}$ $CG=\{C \cap G\}$ $Co(v)=PG \times BG \times CG$

V₁

V₅

200 sensor nodes in an 400mx400m area

START SIMULATION

SCHEDULING IMAGE SENSORS

FIRST OF ALL: DON'T MISS IMPORTANT EVENTS!

WHOLE UNDERSTANDING OF THE SCENE IS WRONG!!!

WHAT IS CAPTURED

HOW TO MEET SURVEILLANCE APP'S CRITICALITY

CAPTURE SPEED CAN BE A « QUALITY » PARAMETER

CAPTURE SPEED FOR NODE V SHOULD DEPEND ON THE APP'S CRITICALITY AND ON THE LEVEL OF REDUNDANCY FOR NODE V

V'S CAPTURE SPEED CAN INCREASE WHEN AS V HAS MORE NODES COVERING ITS OWN FOV - COVER SET

CRITICALITY MODEL (2)

- R^o CAN VARY IN [0,1]
- BEHAVIOR FUNCTIONS (BV) DEFINES THE CAPTURE SPEED ACCORDING TO R⁰
- **R**^o < 0.5
 - □ CONCAVE SHAPE BV
- **R**^o > 0.5

□ CONVEX SHAPE BV

WE PROPOSE TO USE BEZIER CURVES TO MODEL BV FUNCTIONS

SOME TYPICAL CAPTURE SPEED

□ MAXIMUM CAPTURE SPEED IS 6FPS OR 12FPS

2

3

NODES WITH SIZE OF COVER SET GREATER THAN N CAPTURE AT THE MAXIMUM SPEED

Co(v)

N=6	
$P_2(6,6)$	

r°													
0.0				0.05 0.20)	0.51		1.07	2.10	6.	00	
0.2				0.30	0.73		1.34		2.20	3.52	6.	00	
	0.5				2.00	2.00 3.0		00	4.00	5.00	6.	00	
	0.8				2.48 3.80		4.66 5.27		5.70	6.	00		
	1.0				4.93	3	5.49		5.80	5.95	6.	00	
r^0	1	2	3	4	5	6	6	7	8	9	10	11	12
0	.01	.02	.05	0.1	.17		26	.38	.54	.75	1.1	1.5	3
.2	.07	.15	.25	.37	.51		67	.86	$\left 1.1 \right $	1.4	1.7	2.2	3
.4	.17	.35	.55	.75	.97]	1.2	1.4	1.7	2.0	2.3	2.6	3
.6	.36	.69	1.0	1.3	1.5]	1.8	2.0	2.2	2.4	2.6	2.8	3
.8	.75	1.2	1.6	1.9	$\overline{2.1}$	2	2.3	2.5	5 2.6	$\overline{2.7}$	2.8	2.9	3
1	1.5	1.9	2.2	2.4	2.6	2	2.7	2.8	3 2.9	2.9	2.9	2	3

5

Δ

N=12 P₂(12,3)

26

INTRUSION DETECTION

RANDOM INTRUSION

INTRUSION DETECTION SCENARIO

(A)

(в)

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- SLEEP NODE: NODE WITH LOW SPEED CAPTURE.

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

- (C)
- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).
- SLEEP NODE: NODE WITH LOW SPEED CAPTURE.

RISK-BASED SCHEDULING IN IMAGES (1)

 $\Box R^{\circ}=R^{\circ}_{MIN}=0.1, R^{\circ}_{MAX}=0.9, NO ALERT$

RISK-BASED SCHEDULING IN IMAGES (2)

□ R°→R°=R°_{MAX}=0.9

MEAN STEALTH TIME

$T_1 \text{-} T_0$ is the intruder's stealth time velocity is set to 5m/s

MEAN STEALTH TIME RISK-BASED SCHEDULING

MEAN STEALTH TIME W/WO REINFORCEMENT

REINFORCEMENT ALWAYS INCREASES THE NETWORK LIFETIME MEAN STEALTH TIME IS CLOSE TO THE NO-REINFORCEMENT CASE, ESPECIALLY WHEN TA>20S

MODEL PARAMETERS SCHEDULING

MANY FEATURES CAN BE CONTROLLED

- □ INITIAL CRITICALITY LEVEL
- □ MAXIMUM CRITICALITY LEVEL
- □ MAXIMUM NUMBER OF COVERSET
- □ MAXIMUM CAPTURE SPEED
- □ INTRUDER'S VELOCITY
- □ RE-INFORCEMENT BEHAVIOR
- □ ACTIVATE COVERSET ON INTRUSION
- CAMERA ROTATION CAPABILITY
- FORCED INTRUSIONS FOR MULTIPLE-INTRUSION SCENARIOS
- OCCLUSION DUE TO OBSTACLES

IMAGE TRANSMISSION, COMMUNICATION ISSUES

SEND IMAGES TO THE SINK

GEOGRAPHIC ROUTING GPSR

Avoids keeping routing information

Relies on geographic (GPS) coordinates to find next-hop node

Reduces route maintenance overhead

S-MAC - SENSOR MAC

NODES PERIODICALLY SLEEP

- TRADES ENERGY EFFICIENCY FOR LOWER THROUGHPUT AND HIGHER LATENCY
- SLEEP DURING OTHER NODES TRANSMISSIONS
- NEEDS COMPLEX SYNCHRONIZATION MECHANISMS

T-MAC - TIMEOUT MAC

- TRANSMIT ALL MESSAGES IN BURSTS OF VARIABLE LENGTH AND SLEEP BETWEEN BURSTS
- RTS / CTS / ACK SCHEME
- SYNCHRONIZATION SIMILAR TO S-MAC

OUR CURRENT RESEARCH ON MAC LAYER

DUTY-CYCLED MAC (E.G. SMAC)

Listen Sleep Listen Sleep t

LINK THE LISTENING TIME TO THE CRITICALITY MODEL

DISPLAY IMAGES

END-TO-END PERFORMANCES?

Holes in deployment Limited buffers Multi-hop overhead Congestion Channel contention Duty-cycling MAC Physical interference Small PDU Nodes availability

END-TO-END LOSS RATE IS EXPECTED TO BE HIGH!

IMAGE QUALITY? UNCOMPRESSED BMP

1617 PACKETS, 64 BYTES PAYLOAD, ONE HOP LOSS RATE: 20%, NO LOSS BURSTS (RADIO), NO DUTY-CYCLING

ORIGINAL 320X320 256 GRAY LEVELS, BMP 102400 BYTES

MAX TX RATE = 250 KPS (IEEE 802.15.4)

MINIMUM LATENCY = 6.46s

Cannot really use the compressed version of BMP using RLE.

1340 OUT OF 1617 PACKETS RECEIVED

1303 OUT OF 1617 PACKETS RECEIVED

674 OUT OF 1617 PACKETS RECEIVED

WITH LOSS BURSTS (RADIO)

921 OUT OF 1617 PACKETS RECEIVED

689 OUT OF 1617 PACKETS RECEIVED

913 OUT OF 1617 PACKETS RECEIVED

IMAGE QUALITY? STANDARD JPG

427 PACKETS, 64 BYTES PAYLOAD, ONE HOP LOSS RATE: 20%, NO LOSS BURSTS (RADIO), NO DUTY-CYCLING

ORIGINAL 320X320 256 GRAY LEVELS, JPG 27303 BYTES

MAX TX RATE = 250 KPS (IEEE 802.15.4)

MINIMUM LATENCY = 1.61S

Encoding cost of JPEG2000 is too high for these devices.

348 OUT OF 427 PACKETS RECEIVED

351 OUT OF 427 PACKETS RECEIVED

349 OUT OF 1617 PACKETS RECEIVED

WITH LOSS BURSTS (RADIO)

258 OUT OF 427 PACKETS RECEIVED

PACKETS RECEIVED

269 OUT OF 427 PACKETS RECEIVED

IMPROVING IMAGE ROBUSTNESS

302 PACKETS, 64 BYTES PAYLOAD, ONE HOP LOSS RATE: 20%, NO LOSS BURSTS (RADIO), NO DUTY-CYCLING

ORIGINAL 320X320 256 GRAY LEVELS, WSN SPECIFIC 17199 BYTES

248 OUT OF 302 PACKETS RECEIVED

236 OUT OF 302 PACKETS RECEIVED

243 OUT OF 302 PACKETS RECEIVED

MAX TX RATE = 250 KPS (IEEE 802.15.4)

MINIMUM LATENCY = 1.14S

Collaboration with CRAN laboratory, Nancy, France, for robust image encoding techniques for WSN.

WITH LOSS BURSTS (RADIO)

188 OUT OF 302 PACKETS RECEIVED

167 OUT OF 302 PACKETS RECEIVED

158 OUT OF 302 PACKETS RECEIVED

INTRUSION DETECTION SCENARIO

(A)

(в)

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- ◎ SLEEP NODE: NODE WITH LOW SPEED CAPTURE.

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

- (C)
- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).
- SLEEP NODE: NODE WITH LOW SPEED CAPTURE.

SOME IMAGES DISPLAYED BY THE SINK

48

MODEL PARAMETERS IMAGE TRANSMISSION

MANY FEATURES CAN BE CONTROLLED

- □ NAME OF ORIGINAL IMAGE FILE TO SEND
- ENERGY PER IMAGE (CAPTURE, COMPRESSION, TRANSMISSION)
- □ NUMBER OF IMAGES ON INTRUSION
- FORCED IMAGE SENDING, TIME INTERVAL FOR FORCED IMAGE SENDING
- NUMBER OF IMAGES ON COVERSET ACTIVATION
- AUTOMATIC DISPLAY OF IMAGE BY SINK
- □ KEEP RECEIVED IMAGES ON DISK
- RANDOM PACKET DROP AND CORRUPTED BYTES AT APPLICATION LEVEL

VIDEOSENSOR NODE'S

PARAMETER

The videoSensor node's parameters are defined in the .ned file following the OMNET++ syntax.

```
<u>File Edit View Search Tools Documents Help</u>
New Open Save Print... Undo Redo Cut Copy Paste Find Replace
 VideoSensorNode.ned
package node.application.videoSensorNode
// The sensor node module. Connects to the wireless channel in order to communicate
// with other nodes. Connects to psysical processes so it can sample them.
simple VideoSensorNode like node.application.iApplication {
 parameters:
    string applicationID = default ("videoSensorNode");
    bool collectTraceInfo = default (true);
int priority = default (1);
    int packetHeaderOverhead = default (8); // in bytes
    int constantDataPayload = default (0); // in bytes
    // specific to our model
    bool isSink = default (false);
    double minCaptureRate = default (0.01); // in fps
    double maxCaptureRate = default (3.0); // in fps
    double staticCaptureRate = default (0.2); // in fps
     double aov = default (36.0); // in degree, alpha = aov/2 = 18%
    double dov = default (25.0); // in meters
double lineOfSight = default (-1.0); // in degree, negative line of sight means random line of sight between 0..360° (0..2PI)
    double maxBatteryLevel = default (100.0); // in units
    double energyPerCapture = default (1.0); // in battery units
double measuredEnergyPerImageCapture = default (0.0); // in mJ
    double measuredEnergyPerImageCompression = default (0.0); // for instance, prior to transmission, in mJ
    double measuredEnergyPerImageProcessing = default (0.0); // for instance, for intrusion detection, in mJ
    bool alwaysActive = default (false);
    double criticalityLevel = default (0.9); // must be between 0 and 1
double minCriticalityLevel = default (0.1); // must be between 0 and 1
    double maxCriticalityLevelPeriod = default (5.0); // in seconds
    double maxDefinedCoverSetNumber = default (12.0);
    // -1 means automatically detect the number of coversets to get the capture rate
    // n would mean that the computation of the capture rate uses n coversets regardless of the real number of coversets
     // which is usefull for test scenario with a small number of nodes
    double forceNumberOfCoversets = default (-1):
    bool isMobile = default (false);
    double isMobileProb = default (1.0); // must be between 0 and 1
bool isCamRotatable = default (false);
    double isCamRotatableProb = default (1.0); // must be between 0 and 1
    double maxMobilitySpeed = default (0.5); // in m/s
double maxCamRotationTime = default (5.0); // in seconds for a complete rotation
    double maxCamRotationCount = default (2.0); // in number of rotations
    double load = default (0.5); // not used for the moment
    bool idReportToSink = default (false); // can be used to send test packets to the sink
    // specify the sink for source-initiated on-demand routing such as AODV
    // if "NO" then the routing protocol is assumed to be a pro-active protocol such as MPRings (Castalia) or OLSR
    string nextRecipient = default ("NO");
    bool sendImageOnIntrusion = default (false);
    double forcedIntrusionProb = default (0,0):
    bool forceSendImage = default (false);
    double forceSendImageInterval = default (10.0); // in seconds
    bool activateCoversetOnIntrusion = default (false);
bool propagateCoversetActivation = default (false);
    double forcedCoversetActivationAt = default (-1.0);
    int imageCountOnIntrusion = default (1); // how many images a node send when it detects an intrusion
int imageCountOnCoversetActivation = default (1); // how many images a node send when it is activated by a neighbor node
int imageEyteSize = default (32000); // in bytes -> 320x200, 16 colors/pixel
    int imageChunkSize = default (256); // in bytes
string imageFilename = default ("NO");
bool cranEncoding = default (false);
    string imageBMPOriginalFilename = default ("NO");
    bool displayReceivedImage = default (false);
bool waitForKeyPressWhenDisplayImage = default (false);
double displayReceivedImageTimer = default(10); // in s
```

VideoSensorNode.ned (~/Castalia-3.2/src/node/application/videoSensorNode) - gedit

50

LAUNCHING SIMULATIONS

- □ USE THE POWERFUL *CASTALIA* SCRIPT TO LAUNCH SPECIFIC SIMULATION SCENARIO
- DEFINE CONFIGURATIONS IN OMNETPP.INI FILE
 - [Config Video200Config]
 - [Config CSMA], [Config SMAC], [Config TMAC]
 - [Config GPSRRoutingForcedImageTest60_300]
 - [Config BMP128x128ConsumptionModel]
 - [Config CRAN200x200ConsumptionModel]

SELECT CONFIGURATION COMBINATION

- 🖵 Castalia -c
 - CSMA, GPSRRoutingForcedImageTest60_300, Video200Con fig, CRAN200x200ConsumptionModel

ENABLING LARGE-SCALE, OPERATIONAL SEARCH & RESCUE APPLICATIONS

SENSOR & ROBOTS

WIRELESS SENSOR NETWORKS

LARGE SCALE SENSING

NATURAL COLLABORATION THOUGH DATA AGGREGATION, REPORTING, ...

☐ MOBILITY IS NOT A PRIORITY

ROBOTS

□ MOBILITY IS A FUNDAMENTAL FEATURE

EXPLORATION, RESCUE

SENSOR & ROBOTS

- □ WSN PROVIDE SENSING DATA TO ROBOTS
- ROBOTS MAINTAIN CONNECTIVITY

SENSORS COULD HELP FOR LOCALIZATION WHEN GPS DATA ARE DOWN

CHALLENGING COOPERATION IMPLIES DIFFERENCES!

SENSORS & ROBOTS PROPOSE NEW INTERACTION SCHEMES

USE THE CRITICALITY MODEL TO CONTROL BOTH SENSORS AND ROBOTS

PROTOTYPING ON REAL HARDWARE

COOPERATION WITH CAMERAS ON MOBILE ROBOTS

Fixed image sensors near a mobile camera can decrease their criticality level

O

 vr_1

ONLY fixed image sensors whose FoV's center is covered by a mobile camera **CAN** decrease their criticality level

 vr_1

56

IMPACT ON LIFETIME & STEALTH TIME

57

ROBOT SIMULATORS

MOBILITY, EXPLORATION, NAVIGATION, TRACKING, CONTROL AND DESIGN ARE VERY IMPORTANT FOR ROBOTS

□ USE SPECIFIC ROBOT SIMULATORS

SENSORS & ROBOTS ENABLE REALISTIC INTERACTION STUDIES

Sensor specific simulator for communication stack

CONCLUSIONS

- WSN'S NATURAL APPLICATION IS SURVEILLANCE BUT...
- USING WSN TECHNOLOGY FOR MISSION-CRITICAL APPLICATIONS IS FAR FROM BEING MATURE!
- NEED TO TAKE THE APPLICATION'S CRITICALITY INTO ACCOUNT WHEN DESIGNING CONTROL MECHANISMS AND PROTOCOLS
- BUILDING EFFICIENT, RELIABLE LOW LAYERS IS CHALLENGING!
- SENSORS & ROBOTS ARE COMPLEMENTARY TECHNOLOGIES FOR MISSION-CRITICAL APPLICATIONS BUT...
- ...NEED SUITABLE TOOLS!

WEB LINKS

HTTP://WEB.UNIV-PAU.FR/~CPHAM/IWEB/WSN/HOME.HTML

PUBLICLY AVAILABLE MODEL

ARCHIVE <u>HTTP://WEB.UNIV-PAU.FR/~CPHAM/WSN-MODEL/DISTRIB/WVSNMODEL-V4.TGZ</u>

DOCUMENTATION HTTP://WEB.UNIV-PAU.FR/~CPHAM/WSN-MODEL/WVSN-CASTALIA.HTML

RESTRICTED ACCESS

ARCHIVE <u>HTTP://WEB.UNIV-PAU.FR/~CPHAM/WSN-MODEL/DISTRIB-PRIVATE/</u>

DOCUMENTATION <u>HTTP://WEB.UNIV-PAU.FR/~CPHAM/WSN-MODEL/WVSN-CASTALIA-PRIVATE.HTML</u>