WIRELESS SENSOR NETWORKS FOR SEARCH&RESCUE MISSION-CRITICAL APPLICATIONS: FROM LOW-LEVEL CHALLENGES TO MULTI-SENSORS/MULTI-ROBOTS PERSPECTIVES

O. RANA RESEARCH GROUP MAY 9TH, 2012 CARDIFF UNIVERSITY

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

WHAT IS A SENSOR?

- SENSORS COULD MONITOR A WIDE VARIETY OF AMBIENT CONDITIONS THAT INCLUDE THE FOLLOWING:
 - TEMPERATURE,
 - HUMIDITY,
 - VEHICULAR MOVEMENT,
 - □ LIGHTNING CONDITION,
 - PRESSURE,
 - SOIL MAKEUP,
 - □ NOISE LEVELS,
 - ••••

SENSORS CAN BE USED FOR CONTINUOUS SENSING, EVENT DETECTION, EVENT ID, LOCATION SENSING, ETC.

TRADITIONAL SENSING APPLICATIONS

WIRELESS AUTONOMOUS SENSOR

IN GENERAL: LOW COST, LOW POWER (THE BATTERY MAY NOT BE REPLACEABLE), SMALL SIZE, PRONE TO FAILURE, POSSIBLY DISPOSABLE

 ROLE: SENSING, DATA PROCESSING, COMMUNICATION
Radia Transceiver

Monitoring/Surveillance

LARGE SCALE DEPLOYMENT

LIBELIUM WASPMOTE (1)

FROM LIBELIUM

THE FULL TESTBED

CUSTOM BEHAVIOR

http://www.jennic.com/

SPECIFIC APPLICATIONS

TOWARDS GLOBAL SENSING

WHERE CLOUDS COME IN!

SMART CITIES, CONTROLLED SYSTEMS

IMAGE SENSOR MOTES

iMote2 with IMB400 multimedia board

O Current Picture	- • ×	0	Cam	eraGUI	_ 0	×
· Title · · · · · · · · · · · · · · · · · · ·	-			OPTIONS	:	
· · · · · · · · · · · · · · · · · · ·	-	Grays	cale	VGA	(320x240)	•
			ON	E-SHOT M	DDE:	
				Capture		
Juli -				Save		
			NO	N-STOP M	ODE:	
O Last Picture	_ 			Play >>		
· · · · ·				Stop		
		Msg	ID	1000		F
	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Msg	TD	1100		
The second second	100	Msg	ID	1150		
						Ē
	and the second s	(<u> </u>				رلصف

SEARCH & RESCUE

Imote2

Multimedia board

ACTIVITY DETECTION

GET IMAGES FROM DEPLOYED SENSORS

ENERGY CONSIDERATION

CC2420

+ +	TX power Odbm: 17.4mA
	P = I x V = 17.4 x 3.3 = 57.42mW
ACELL	E = P x t -> t = E/P
18720 Joules	326018s or 90.5h

Parameter	Min.	Тур.	Max.	Unit	Condition / Note
Current Consumption, transmit mode:					
P = -25 dBm P = -15 dBm P = -10 dBm P = -5 dBm		8.5 9.9 11 14		mA mA mA mA	The output power is delivered differentially to a 50 Ω singled ended load through a balun, see also page 55.
P = 0 dBm		17.4		mA	
		1	1		

Haven't considered:

- Baseline power consumption of the sensor board
- RX consumption: 18.8mA!
- Image capture consumption
 - Image processing consumption

ACTIVE SENSOR NETS (1)

AVOIDS THE BLACK-BOX VISION

ACTIVE SENSOR NETS (2)

AVOIDS THE BLACK-BOX VISION

26

DYNAMIC RECONFIGURATION

TARGET PLATFORM: MICAZ EXTENSION OF THE THINK GENERIC COMPONENTS ->VALENTINE OS

TOWARDS SERVICE ORIENTED ARCHITECTURE

FAST RECONFIGURATION ENABLES DYNAMIC AND ON-THE-FLY NEW SERVICES DEPLOYMENT

SCHEDULING IMAGE SENSORS

FIRST OF ALL: DON'T MISS IMPORTANT EVENTS!

WHOLE UNDERSTANDING OF THE SCENE IS WRONG!!!

WHAT IS CAPTURED

HOW TO MEET SURVEILLANCE APP'S CRITICALITY

CAPTURE SPEED CAN BE A « QUALITY » PARAMETER

CAPTURE SPEED FOR NODE V SHOULD DEPEND ON THE APP'S CRITICALITY AND ON THE LEVEL OF REDUNDANCY FOR NODE V

V'S CAPTURE SPEED CAN INCREASE WHEN AS V HAS MORE NODES COVERING ITS OWN FOV - COVER SET

NODE'S COVER SET

 $|\mathbf{Co}(\mathbf{V})| = 7$

CRITICALITY MODEL (2)

- R^o CAN VARY IN [0,1]
- BEHAVIOR FUNCTIONS (BV) DEFINES THE CAPTURE SPEED ACCORDING TO R⁰
- **R**^o < 0.5
 - □ CONCAVE SHAPE BV
- **R**^o > 0.5

□ CONVEX SHAPE BV

WE PROPOSE TO USE BEZIER CURVES TO MODEL BV FUNCTIONS

MEAN STEALTH TIME

$T_1 \text{-} T_0$ is the intruder's stealth time velocity is set to 5m/s

RISK-BASED SCHEDULING IN IMAGES (1)

 $\Box R^{\circ}=R^{\circ}_{MIN}=0.1, R^{\circ}_{MAX}=0.9, NO ALERT$

RISK-BASED SCHEDULING IN IMAGES (2)

□ R°→R°=R°_{MAX}=0.9

MEAN STEALTH TIME STATIC SCHEDULING

40

MEAN STEALTH TIME RISK-BASED SCHEDULING

COMMUNICATION ISSUES

REVIEW OF COMMUNICATION ARCHITECTURE

MULTI-HOP PACKET FORWARDING

ROUTING ENERGY VS LATENCY

PROACTIVE?

- MAINTAIN & UPDATE ROUTING TABLE INDEPENDENTLY OF COMMUNICATION NEEDS
- PERIODICAL UPDATES
- SAME PHILOSOPHY THAN IN WIRED-NETWORKS (RIP, OSPF)
- □ LOW LATENCY
- WASTE » BANDWIDTH AND ENERGY
- REACTIVE, ON-DEMAND?
 - ON-THE-FLY DISCOVERY OF ROUTES, WHEN COMMUNICATION NEEDS APPEAR
 - SAVE BANDWIDTH AND ENERGY
 - HIGHER LATENCY
 - GENERALLY EFFICIENT AT LOW LOAD
- HYBRID?
 - PROACTIVE OR REACTIVE DEPENDING ON THE DISTANCE

FLAT VS HIERARCHICAL

□ FLAT ROUTING?

SIMPLE

□ NOT SCALABLE!

HIERARCHICAL ROUTING?

MORE EFFICIENT

« LEADERS » ELECTION OVERHEAD

MOBILITY COST

MULTIPLE HIERARCHY LEVELS ARE POSSIBLE

- GEOGRAPHICAL ROUTING?
 - □ GPS-AIDED FOR INSTANCE
 - EFFICIENT ROUTING TOWARDS THE DESTINATIONS
 - GEOGRAPHICAL INFORMATION ARE PROPAGATED USING FLOODING

On-demand multi-hop routing illustrated: AODV example

RREQ

AODV (Example)

----> Reverse Path Setup

51

AODV (Example)

AODV (Example) F J В D (**P**) **G** \mathbf{c} S (T) Z

AODV (Example) A У, F J В P **G** \mathbf{c} S E. •---- **I**+---- **T** Ζ RREP

AODV (Example) F J B Ρ G S C

AODV (Example) F..... J B Ρ S

AODV (Example) **y** F..... J B Ρ S

QUITE HIGH IN LARGE NETWORKS!

GEOGRAPHIC ROUTING

Avoids keeping routing information

Relies on geographic (GPS) coordinates to find next-hop node

Reduces route maintenance overhead

AREA-BASED GEOGRAPHIC ROUTING

61

CONS: HOLES IN NETWORK INCREASES PATH LENGTH

Need to detect/indicate where are the holes so that nodes at the border of a hole will not be selected

Nodes that run out of energy may create new holes!

Holes signalling overhead can become high

FUNNELING EFFECT

MANY-TO-ONE TRAFFIC PATTERN CAUSES CONGESTION IN THE ROUTING FUNNEL

ENERGY EFFICIENT ROUTING

CONTEXT-AWARE ROUTING

APPLICATION-SPECIFIC ROUTING, CROSS-LAYERED ROUTING

REVIEW OF COMMUNICATION ARCHITECTURE

WIRELESS MEDIUM IS A SHARED MEDIUM

Collisions when multiple transmissions (e.g. multi-hop)

Hidden terminal problem

WiFi transmission power is too energy-consuming for WSN!

Huge cost of passive listening!

WSN can be idle for a long period!

S-MAC - SENSOR MAC

NODES PERIODICALLY SLEEP

- TRADES ENERGY EFFICIENCY FOR LOWER THROUGHPUT AND HIGHER LATENCY
- SLEEP DURING OTHER NODES TRANSMISSIONS
- NEEDS COMPLEX SYNCHRONIZATION MECHANISMS

T-MAC - TIMEOUT MAC

- TRANSMIT ALL MESSAGES IN BURSTS OF VARIABLE LENGTH AND SLEEP BETWEEN BURSTS
- RTS / CTS / ACK SCHEME
- SYNCHRONIZATION SIMILAR TO S-MAC

B-MAC

 LOW POWER LISTENING (LPL) USING PREAMBLE SAMPLING

 AVOIDS COSTLY SYNCHRONIZATION MECHANISMS

CHALLENGES FOR MAC PROTOCOLS IN WSN

ENERGY EFFICIENCY LOW LATENCIES FAIRNESS

A CHALLENGE FOR MISSION-CRITICAL APPLICATION

OUR CURRENT RESEARCH ON MAC LAYER

DUTY-CYCLED MAC (E.G. SMAC)

Listen Sleep Listen Sleep t

LINK THE LISTENING TIME TO THE CRITICALITY MODEL

END-TO-END PERFORMANCES?

Holes in deployment Limited buffers Multi-hop overhead Congestion Channel contention Duty-cycling MAC Physical interference Small PDU Nodes availability

END-TO-END LOSS RATE IS EXPECTED TO BE HIGH!

IMAGE QUALITY? UNCOMPRESSED BMP

1617 PACKETS, 64 BYTES PAYLOAD, ONE HOP LOSS RATE: 20%, NO LOSS BURSTS (RADIO), NO DUTY-CYCLING

ORIGINAL 320X320 256 GRAY LEVELS, BMP 102400 BYTES

MAX TX RATE = 250 KPS (IEEE 802.15.4)

MINIMUM LATENCY = 6.46s

Cannot really use the compressed version of BMP using RLE.

1340 OUT OF 1617 PACKETS RECEIVED

1303 OUT OF 1617 PACKETS RECEIVED

674 OUT OF 1617 PACKETS RECEIVED

WITH LOSS BURSTS (RADIO)

921 OUT OF 1617 PACKETS RECEIVED

689 OUT OF 1617 PACKETS RECEIVED

913 OUT OF 1617 PACKETS RECEIVED

IMAGE QUALITY? STANDARD JPG

427 PACKETS, 64 BYTES PAYLOAD, ONE HOP LOSS RATE: 20%, NO LOSS BURSTS (RADIO), NO DUTY-CYCLING

ORIGINAL 320X320 256 GRAY LEVELS, JPG 27303 BYTES

MAX TX RATE = 250 KPS (IEEE 802.15.4)

MINIMUM LATENCY = 1.61S

Encoding cost of JPEG2000 is too high for these devices.

348 OUT OF 427 PACKETS RECEIVED

351 OUT OF 427 PACKETS RECEIVED

349 OUT OF 1617 PACKETS RECEIVED

WITH LOSS BURSTS (RADIO)

258 OUT OF 427 PACKETS RECEIVED

2/0 OUT OF 42/ PACKETS RECEIVED 269 OUT OF 427 PACKETS RECEIVED

IMPROVING IMAGE ROBUSTNESS

302 PACKETS, 64 BYTES PAYLOAD, ONE HOP LOSS RATE: 20%, NO LOSS BURSTS (RADIO), NO DUTY-CYCLING

ORIGINAL 320X320 256 GRAY LEVELS, WSN SPECIFIC 17199 BYTES

248 OUT OF 302 PACKETS RECEIVED

236 OUT OF 302 PACKETS RECEIVED

243 OUT OF 302 PACKETS RECEIVED

Max TX rate = 250 kps (IEEE 802.15.4)

MINIMUM LATENCY = 1.14S

Collaboration with CRAN laboratory, Nancy, France, for robust image encoding techniques for WSN.

WITH LOSS BURSTS (RADIO)

188 OUT OF 302 PACKETS RECEIVED

167 OUT OF 302 PACKETS RECEIVED

158 OUT OF 302 PACKETS RECEIVED
INTRUSION DETECTION SCENARIO

(A)

(в)

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- ◎ SLEEP NODE: NODE WITH LOW SPEED CAPTURE.

ALERTED NODE: NODE WITH HIGH SPEED CAPTURE (ALERT INTRUSION).

 $r^{\circ} = max$

- SENTRY NODE: NODE WITH HIGH SPEED CAPTURE (HIGH COVER SET).
- CRITICAL NODE: NODE WITH HIGH SPEED CAPTURE (NODE THAT DETECTS THE INTUSION).
- SLEEP NODE: NODE WITH LOW SPEED CAPTURE.

SOME IMAGES DISPLAYED BY THE SINK

76

ENABLING LARGE-SCALE, OPERATIONAL SEARCH & RESCUE APPLICATIONS

SENSOR & ROBOTS

WIRELESS SENSOR NETWORKS

LARGE SCALE SENSING

NATURAL COLLABORATION THOUGH DATA AGGREGATION, REPORTING, ...

☐ MOBILITY IS NOT A PRIORITY

ROBOTS

□ MOBILITY IS A FUNDAMENTAL FEATURE

□ EXPLORATION, RESCUE

SENSOR & ROBOTS

□ WSN PROVIDE SENSING DATA TO ROBOTS

□ ROBOTS MAINTAIN CONNECTIVITY

SENSORS COULD HELP FOR LOCALIZATION WHEN GPS DATA ARE DOWN

CHALLENGING COOPERATION IMPLIES DIFFERENCES!

ROBOT'S MOBILITY TO PRESERVE CONNECTIVITY

Imote2

Multimedia board

RESCUE COULD BE OPERATED IN SEVERAL PHASES (1)

Deploy in mass a WSN to get a first snapshot of the situation: images, radiation level, targets,...

RESCUE COULD BE OPERATED IN SEVERAL PHASES (2)

Based on collected data, optimize deployment/ selection of autonomous robots

RESCUE COULD BE OPERATED IN SEVERAL PHASES (3)

Robots could serve as relay or install communication gateways to maintain WSN connectivity and increase data storage capability

RESCUE COULD BE OPERATED IN SEVERAL PHASES (4)

Sensor & Robots will contineously collaborate during the rescue process: localization, path optimization, remote sensing,...

DISASTER MANAGEMENT INFORMATION SYSTEMS

From « Development of Temporal GIS Server Unit for Grouped Rescue Robots System", Michinori HATAYAMA(DPRI, Kyoto Univ.), Hisashi Mizumoto (Kyoto University), Fumitoshi Matsuno (Kyoto University). Slides presented at ROSIN 10. Modified by C. Pham with sensor nets.

From « Development of Temporal GIS Server Unit for Grouped Rescue Robots System", Michinori HATAYAMA(DPRI, Kyoto Univ.), Hisashi Mizumoto (Kyoto University), Fumitoshi Matsuno (Kyoto University). Slides presented at ROSIN 10

From « Development of Temporal GIS Server Unit for Grouped Rescue Robots System", Michinori HATAYAMA(DPRI, Kyoto Univ.), Hisashi Mizumoto (Kyoto University), Fumitoshi Matsuno (Kyoto University). Slides presented at ROSIN 10

SENSORS & ROBOTS PROPOSE NEW INTERACTION SCHEMES

USE THE CRITICALITY MODEL TO CONTROL BOTH SENSORS AND ROBOTS

PROTOTYPING ON REAL HARDWARE

COOPERATION WITH CAMERAS ON MOBILE ROBOTS

Fixed image sensors near a mobile camera can decrease their criticality level

O

 vr_1

ONLY fixed image sensors whose FoV's center is covered by a mobile camera **CAN** decrease their criticality level

89

 vr_1

IMPACT ON LIFETIME & STEALTH TIME

90

IMAGE SENSOR SIMULATION MODEL UNDER OMNET++

COMMUNICATION LAYERS ARE VERY IMPORTANT FOR WSN USE SPECIFIC SIMULATOR

STUDY THE IMPACT OF COMMUNICATION LAYER ON SURVEILLANCE QUALITY

79(33.8)<-46(1)	
(SN) SN X	
	OMNeT++/Tkeny - SN
tennode[105] node[138] node[138] node[138] node[138]	
0.0366*/300/01 0.63(0.100.00*******************************	T=31.118698566965 Running
177] Q.037 (Q.037 (Q.04) (Q	imsgs created, 66/040 msgs present: 166/
	Timer message,.capture,.capture,.capture,capture,capture, capture, Timer message,
node[33] node[33] node[33] node[33]	Timer message capture capture, capture, capture, capture, capture, capture, capture, capture, Timer message
node[126]. +=rr +++	SN.node[46].Application Sending [image] of size 288 butes to communication law
0.03(0.1000) 0.03(0	SN.node[46].Application Sending [image] of size 288 bytes to communication lays
0098(9768) 2.58(56769) over incestation in	SN.node[46].Application Sending [image] of size 288 bytes to communication lage
0.03([100.4] node[106] 3.00(18:35.0) node[106] 3.00(12:36.0)**	SN.node[46].Application Sending [image] of size 288 bytes to communication lays SN.node[46].Application Sending [image] of size 288 bytes to communication lays
0.03(0,100,0) 0.	SN.node[46].Application Sending [image] of size 288 bytes to communication lays
node[37] 0.000133000e[3]980(193.900000000000000000000000000000000000	SN.node[46].Application Sending [image] of size 288 bytes to communication lay: SN.node[46].Application Sending [image] of size 288 bytes to communication lay:
0.03(0:100.0)** hade[95] 1.946684[82] 1.06(0000(035)) node[45]	SN.node[46].Application Sending [image] of size 288 bytes to communication lay: SN.node[46] Application Sending [image] of size 288 bytes to communication lay:
1.0.0.000000041 node[b2]33 onde[68]93000001933.0** 2+33(9,100.0**	SN.node[46].Application Sending [image] of size 288 bytes to communication laye
node[74] 0.14(2)1.0) 2.66(99/#(37), 44/9.550(5)* pode[140]	SN.nodeL46].Application Sending Limagel of size 288 bytes to communication lay: SN.node[46].Application Sending [image] of size 288 bytes to communication lay:
node[60] 0.32(4:5.0) 0.22(3:68 (f) 0.02(3:68 (f) 0.02(f) 0.02(3:68 (f) 0.02(f) 0.02(f) 0.02(f) 0.02(f) 0.02(f) 0.0	SN.node[46].Application Node 46> REAL IMAGE(1) to node 79
1.00(0.62 mode[92] 7 0 03(0.100 0) 0.61(6.71.0) 2.39(4.79.0) node(0.04(0.100 0) 0.61(6.71.0) 2.39(4.79.0)	
	SN.NODELI48J.HPPIICATION NODE 148; INIKUSIUN SEEN
1.90.03和209990/32(4'67'0) node[1031 386384定页的34[72]0.0)** node[70]	SN.node[148].Application Sending [alert] of size 30 bytes to communication layer SN.node[148].Application Node 148: INIRUSION SEEN
1.41 (350) 0.3272 /800 1 (6.63 (35 (6) (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3 (3	pert.coverage 99.8628% nb active nodes 100%
node[16#e][69]/(3)#e#3 bit node[79] node[147] 0.03(0:100.0)** 0.03(0:100.0)**	SN.node[5].Application Node 5: INTRUSION SEEN
0.03(0.1084(0.116.0) 0.03(0.100000000000000000000000000000000	SN.node[5].Application Sending [alert] of size 30 bytes to communication layer
0.032 100 a model[135] 194/2 3311 1003(0.100.0)	SN.node[6].Application Sending [alert] of size 30 bytes to communication layer
0.83294399-00.0000100100000000000000000000000000	SN.node[5].Application Node 5: INTRUSION SEEN SN.node[6].Application Node 6: INTRUSION SEEN
0.05(0:100.0) - 0.05(0:100.0)	SN.node[124].Application Node 124: INTRUSION SEEN
	SN.node[124].Application Sending [alert] or size 50 bytes to communication layer SN.node[5].Application Node 5: INTRUSION SEEN
	SN.node[24].Application Node 24: INTRUSION SEEN SN.node[24].Application Sending [alert] of size 30 butes to communication lawer
	SN.node[6].Application Node 6: INTRUSION SEEN
31.118698566965	SN.node[79].Application Node 79: WRITES IMAGE FILE(1) from node 10
	SN.node[/9].Application Node /9: DISPLAY REAL IMAGE(1) from node 10

ROBOT SIMULATORS

MOBILITY, EXPLORATION, NAVIGATION, TRACKING, CONTROL AND DESIGN ARE VERY IMPORTANT FOR ROBOTS

□ USE SPECIFIC ROBOT SIMULATORS

SENSORS & ROBOTS ENABLE REALISTIC INTERACTION STUDIES

Sensor specific simulator for communication stack

CONCLUSIONS

- WSN'S NATURAL APPLICATION IS SURVEILLANCE BUT...
- USING WSN TECHNOLOGY FOR MISSION-CRITICAL APPLICATIONS IS FAR FROM BEING MATURE!
- NEED TO TAKE THE APPLICATION'S CRITICALITY INTO ACCOUNT WHEN DESIGNING CONTROL MECHANISMS AND PROTOCOLS
- BUILDING EFFICIENT, RELIABLE LOW LAYERS IS CHALLENGING!
- SENSORS & ROBOTS ARE COMPLEMENTARY TECHNOLOGIES FOR MISSION-CRITICAL APPLICATIONS BUT...
- ...NEED SUITABLE TOOLS!