
Image and Audio Challenges!
!

(for surveillance applications)!

CARI 2014 tutorial - PART II!
Gaston Berger University!

October, 17th, 2014!
Saint-Louis, Senegal!

Prof. Congduc Pham!
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

2	

Towards multimedia
information!

Near real-time constraints,
large amount of data,
stream-like
communication,…

3	

Mission-critical apps!

Disaster relief, Search &
Rescue, Intrusion
detection, …

4	

Ex: Situation-awareness!

Collect data to improve the responsiveness !
of rescue operations !

5	

Exploiting Acoustic data!

(Audio)
Surveillance

Energy-
efficiency

Sound Mappings

Traffic Accidents

Traffic
Management

Ambient Assisted Living

From EAR-IT slides

6	

Use deployed low-resource
IoT node to enhance acoustic

services!

Play/store received !
Audio data

Relay

HELP!!

Relay

7	

SmartSantander test-bed!
Santander’s sensor network deployment!

Image sensors!
!
!

8

iMote2 with IMB400 ���
multimedia board	

Seedeye	

Pixy	

Cyclops	

9	

image sensors for
surveillance!

n1

n2

n3
n4

n2

n3

n4

alerted node

Periodically capture to
detect intrusions/event

Send alerts to neighbors

Propagate alerts to the sink

Send images to the sink

10	

Sensing range &
coverage!

A

B

C

VS

Image sensors capture scene with a Field of View
~ a cone

Image resolution, capture speed, rotation,…

11	

Real scene

Don’t miss important
events!!

What is captured!

Whole
understanding
of the scene is
wrong!!!

12	

« High-quality » not
necessarily good!

333x358 16M colors, no light	

167x180 16 colors, light	

167x180 BW (2 colors), light	

Keep in mind
the goal of the
application!

13	

Schedule activity with
criticality in mind!

q  Link the activity
to redundancy
level!

q  High criticality!
q  Convex shape!
q  Most projections

of x are close to
the max activity!

q  Low criticality!
q  Concave shape!
q  Most projections

of x are close to
the min activity!

q  Concave and
convex shapes
automatically
define sentry
nodes in the
network! Redundancy!

Activity!
Level!

14	

Image sensor’s cover set!

p

b c
v1

v2

v3

v6

v5

v4

Co(V)= {	

{V }, 	

{V1, V3, V4},	

{V2, V3, V4}, 	

{V3, V4, V5},	

{V1, V4, V6},	

{V2, V4, V6},	

{V4, V5, V6}	

}	

|Co(V)| = 7	

15	

Fr
am

es
 /

se
co

nd

cover sets

A

B

Proposed criticality
model!

q  r0 can vary in [0,1]!
q  BehaVior functions

(BV) defines the
capture speed
according to r0!

q  r0 < 0.5!
q  Concave shape BV!

q  r0 > 0.5!
q  Convex shape BV!

q  We propose to use
Bezier curves to
model BV functions !

0"

0.75"

1.24"

1.61"
1.90"

2.14"
2.33"

2.49"
2.63" 2.75"

2.85"2.93"
3"

0.00"

0.50"

1.00"

1.50"

2.00"

2.50"

3.00"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10" 11" 12"

fps$

Criticality level=0.8!

16	

Criticality-based activity
schedule!

n fps = 2.63
cs = 8

fps = 0.75
cs = 1

fps = 0.75
cs = 1

fps = 1.61
cs = 3

fps = 0.75
cs = 1

fps = 0.75
cs = 1

fps = 1.24
cs = 2

fps = 1.90
cs = 4

fps = 0.75
cs = 1

fps =1.24
cs = 2

fps = 1.24
cs = 2

fps = 2.14
cs = 5

fps = 0.75
cs = 1

fps : frames/second
cs : # cover sets criticality level = 0.8

Sentry nodes have
higher probability to
detect events and to
send alerts

17	

mean stealth time under!
criticality-based scheduling!

1300s

450s

18	

Image quality?!
Uncompressed BMP!

Original 320x320 !
256 gray levels, !
BMP 102400 bytes!
!
Max TX rate = 250 kps!
(IEEE 802.15.4)!
!
Minimum latency = 3.27s !

1617 packets, 64 bytes payload, one Hop!
Loss rate: 20%, No loss bursts (radio), No duty-cycling!

1340 out of 1617 !
packets received!

1303 out of 1617 !
packets received!

674 out of 1617 !
packets received!

With loss bursts (radio)!

921 out of 1617 !
packets received!

689 out of 1617 !
packets received!

913 out of 1617 !
packets received!

Cannot really use the
compressed version of
BMP using RLE.

19	

Image quality?!
Standard JPG!

Original 320x320 !
256 gray levels, !
JPG 27303 bytes!
!
Max TX rate = 250 kps!
(IEEE 802.15.4)!
!
Minimum latency = 0.87s !

427 packets, 64 bytes payload, one Hop!
Loss rate: 20%, No loss bursts (radio), No duty-cycling!

348 out of 427 !
packets received!

351 out of 427 !
packets received!

349 out of 1617 !
packets received!

With loss bursts (radio)!

258 out of 427 !
packets received!

270 out of 427 !
packets received!

269 out of 427 !
packets received!

?

?
8 out of 12 images !
could not be decoded!

9 out of 12 images !
could not be decoded!

Encoding cost of
JPEG2000 is too high for
these devices.

20	

Improving image
robustness!

Original 200x200 !
256 gray levels,
adjustable !
image quality: 6236b
(Q=20)!
!
Max TX rate = 250 kps!
(IEEE 802.15.4)!
!
Minimum latency = 0.20s !

Collaboration with CRAN
laboratory, Nancy, France,
for robust image encoding
techniques for WSN.

Original BMP 40000b Q=50 S=11045b 142pkts Q=40 S=9701b 123pkts Q=30 S=8100b 101pkts

Q=20 S=6236b 76pkts Q=15 S=5188b 63pkts Q=10 S=3868b 47pkts

PSNR=23.2264 PSNR=24.2231 PSNR=25.1661

PSNR=20.5255 PSNR=21.4475 PSNR=22.1293

21	

Robust to packet losses!

1 2 3

10% 20% 30% 40%

50% 60% 70% 80%

22	

Multimedia sensor
simulation model!

q Advanced propagation and radio
models!

q Layered, flexible architecture!

Need to know the power
consumption for capturing an
image, processing/compressing
an image & transmitting an
image…

23	

Intrusion detection
scenario!

60 image sensor nodes!
75mx75m!
1 sink (node 54)!

Application:Image sent!
+---------+--------+---------+------------------------+--------------+!
| | Images | Packets | by coverset activation | on intrusion |!
+---------+--------+---------+------------------------+--------------+!
| node=2 | 1 | 206 | 0 | 1 |!
| node=5 | 4 | 824 | 0 | 4 |!
| node=9 | 2 | 412 | 2 | 0 |!
| node=10 | 6 | 1236 | 6 | 0 |!
| node=12 | 1 | 206 | 0 | 1 |!
| node=15 | 2 | 412 | 2 | 1 |!
| node=17 | 1 | 206 | 0 | 1 |!
| node=19 | 3 | 618 | 0 | 3 |!
| node=22 | 4 | 824 | 0 | 4 |!
| node=23 | 2 | 412 | 0 | 2 |!
| node=24 | 6 | 1236 | 0 | 6 |!
| node=26 | 1 | 206 | 1 | 0 |!
| node=27 | 6 | 1236 | 0 | 6 |!
| node=29 | 7 | 1442 | 6 | 1 |!
| node=33 | 6 | 1236 | 6 | 0 |!
| node=35 | 12 | 2472 | 0 | 12 |!
| node=37 | 5 | 1030 | 0 | 5 |!
| node=40 | 8 | 1648 | 3 | 5 |!
| node=46 | 2 | 412 | 2 | 0 |!
| node=48 | 2 | 412 | 0 | 2 |!
| node=50 | 2 | 412 | 2 | 0 |!
+---------+--------+---------+------------------------+--------------+!

Application:Image displayed!
+----------+-----+----------+-----------+!
| | all | complete | truncated |!
+----------+-----+----------+-----------+!
| index=-1 | 39 | 21 | 18 |!
| index=5 | 1 | 0 | 1 |!
| index=9 | 2 | 1 | 1 |!
| index=10 | 6 | 3 | 3 |!
| index=23 | 2 | 0 | 2 |!
| index=24 | 3 | 0 | 3 |!
| index=27 | 4 | 4 | 0 |!
| index=29 | 7 | 6 | 1 |!
| index=33 | 3 | 3 | 0 |!
| index=35 | 4 | 0 | 4 |!
| index=37 | 5 | 3 | 2 |!
| index=50 | 2 | 1 | 1 |!
+----------+-----+----------+-----------+!

0

5

9

0

0 1

35

1

29

5 6

24	

Routing issues!

q  Images generate large amount of data
transported in many packets!

q  Images from multiple sources to the
sink can saturate the radio channel!

q  Multipath routing can be used for
reliabiity, load-balancing, mitigating
congestion thus packet losses!

q  As more images need to be sent, a high
number of paths towards the sink is
desirable!

25	

How to find the best next
hop?!

F(v)

F2(v, u)

v

u

w

k

m

F2(v, w)

N(v)

26	

Radio/MAC duty-cycling
Issues!

q Radio & MAC layer activities
represent a large part of
energy consumption!

q Most of operation modes imply
duty-cycling behavior!

Node
A

Node
B Alert

 Sleep
Time

MISSED ALERT!!

Acoustic sensing!
!
!

HELP!!

28	

Time

Amplitude

Continous

Discrete

Continous Discrete

Only in this case can we associate
an integer value to the signal

Analog signal Quantized signal

Digital signal Sampled signal

Audio CD, CCD Computer

analog filter / ampli Ideal logical siognal

Real world

sampling

Quantization

Review of digital audio!

29	

An incorrectly sampled signal will not be
reconstituted

Shannon’s theorem: Fe > 2 x Fmax(Signal)

Example :

Samples

Extrapolated
signal ?

Sampling: Shannon’s
theorem!

30	

Narrow-band audio!

•  Sampling rate up to 8kHz!
•  1 sample every 1/8000s (125us)!
•  Sample coded on 8 bits!
•  Raw throughput of 64kbps!
•  So-called Pulse Code

Modulation (PCM) used in most
wired telephony systems!

•  With 4kHz sampling rate, can
reduce to 32kbps!

31	

Audio streaming principle!

Digital signal

Computer

160 8-bit samples (20ms)

32	

Practical audio!

•  Electret mic with
amplifier on ADC
input pin!

•  Convert from 10-
bit to 8-bit
sample!

•  8Khz sampling
gives 64000bps!

•  4Khz sampling
gives 32000bps!

100 8-bit samples (12.5ms or 25ms)

33	

Simple program!
#define TIMING_SAMPLING 125 // 8000Hz!
#define CAPTURE_DURATION 15000000UL // in us 15s!
#define SAMPLE_COUNT_CAPTURE CAPTURE_DURATION/TIMING_SAMPLING!
!
void setup() {!
 Timer1.initialize(TIMING_SAMPLING);!
}!
!
void callback () {!
!
 sampleCount++;!
 !
 if (sampleCount < SAMPLE_COUNT_CAPTURE) {!
 !
 val = analogRead(ANALOG2) ; // read analog value!
 val8bit = ((val >> 2)) ; // convert into 8 bit!
!
 // write on UART1!
 serialWrite(val8bit,1);!
 } else {!
!
 stopCapture=true;!
 !
 Timer1.detachInterrupt();!
 } !
} !
!
void loop() {!

!!
!// we have to go to sleep!
!if ((millis() - lastWakeupTime > 15000 || stopCapture) && capturingAudio) {!
! !capturingAudio = false;!

 !stopCapture = false;!
!}!
!!
!// we have to wake up!

 if (millis() - lastSleepTime > 15000 && !capturingAudio) {!
! !sampleCount=0L;!

 !lastWakeupTime = millis();!
 !capturingAudio = true;!

! !Timer1.attachInterrupt(callback);!
 }!
}!

Get digital value of sound pressure level,
i.e. raw audio

Digital signal

Computer

Or any other way to put the sample into
a transmission buffer

!
void setup() {!
 Timer1.initialize(TIMING_SAMPLING);!
}!

val = analogRead(ANALOG2) ; // read analog value!
val8bit = ((val >> 2)) ; // convert into 8 bit!

// we have to wake up!
if (millis() - lastSleepTime > 15000 && !capturingAudio) {!

! !sampleCount=0L;!
 !lastWakeupTime = millis();!
 !capturingAudio = true;!

! ! Timer1.attachInterrupt(callback);!
}!

34	

Communication
performances!

•  Application level
performances depends on
OS, API, hardware
architecture!

•  Usually much lower than
radio performances!

•  What are minimum latencies
& max. throughput?!
•  For sending?!
•  For receiving?!
•  For relaying?!

35	

Sending performances!

Traffic
Generator!

void loop() {!
!T0;!
!L0=T0;!
!...!
!T1;!
!send(buf);!
!T2;!
!...!

}!

Measure the time
in various part of
API send()
when possible.

« Time in send() » is T2-T1
« Time between 2 pkt generation » is T0-L0
Time resolution is millisecond
Minimum data manipulation

1

1 tread trelay

1
tprocessing

2

tsend

100 8-bit samples (12.5ms or 25ms)

36	

IoT node sending
performance!

Libelium WaspMote

Arduino Mega2560

No capture and transmission at the same time if using only mote ucontroller!

100 8-bit samples (12.5ms or 25ms)

37	

development of audio
board!

•  Use dedicated audio board for
sampling/storing/encoding!

•  Encoding scheme is Speex at 8kbps!
•  Designed for multi-platform motes!
•  Developed for EAR-IT project!

Specially designed audio
board by INRIA CAIRNS &
Feichter Electronics

dsPIC33 with 8kbps speex
real-time encoder

38	

speex at 8kbps!

160 8-bit samples (20ms)

20 bytes of encoded audio data

24 or 21 bytes frame

1 byte!
frame size speex_sampledec_wframing!

1 byte!
Seq. No.

2 bytes!
framing!
0xFF0x55

Can do audio frame aggregation

39	

Summary of audio
constraints!

Codec Minimum sending rate

Raw

4KHz

8KHz

100 bytes every 25ms

100 bytes every 12.5ms

Speex 8000bps

A1
A2
A3
A4

24 bytes every 20ms
48 bytes every 40ms
72 bytes every 60ms
96 bytes every 80ms

40	

Audio quality: PESQ &
MOS (1)!

•  ITU-T P.862 Perceptual
evaluation of speech quality
(PESQ): An objective method for
end-to-end speech quality
assessment of narrow-band
telephone networks and speech
codecs.!

•  We can use ITU-T PESQ tool to
determine the MOS value for
loss-free encoded audio
(codec2, speex, …). MOS-LQO
values greater than 2.6 are
considered good.!

41	

Test8000.raw!

42	

Test8000.spx, 20B/pkt
(A1)!

43	

Test800.spx, 40B/pkt (A2)!

44	

Test800.spx, 60B/pkt (A3)!

45	

Multi-Hop Packet
Forwarding!

1 3

1

1 tread trelay

1
tprocessing

?

Multi-hop is very costly (routing) and
generates lot’s of packet losses!

 In data-intensive applications, a lot of packets will be transmitted,

usually at high transmission rate!

2

tsend

What level of performances can we expect?

46	

Relay performances!

1

1 tread trelay

1
tprocessing

2

tsend

•  Relaying are usually done at
application-level (even OS level
is considered app-level for the
mote)!

•  Relaying means:!
q Read the packet in memory!
q Send the packet to next hop!

47	

Santander’s limitations!

SmartSantander’s IoT node uses 38400
baud rate for communication between
XBee radio and host ucontroller

Needs to discard audio frame
at the source to increase the
time window

48	

speex at 8kbps on slow
relay nodes!

160 bytes (20ms)

20 bytes of encoded audio data

Capture 6
audio frames
(120ms) but
only send 4

Need to be
able to relay
96-byte pkt
every 120ms

1 2 3 6 5 4

A6 aggregate audio frames!

2 3 6 5

7 8

8

Add framing
bytes!

49	

Conclusions!

q  Sensor Networks can provide large scale
awareness to setup the foundation for
ambient intelligence to offer new services
for smart societies!

q  Hot topics are multimedia information for
enhanced situation-awareness!

q  Dealing with images and audio is
challenging and needs careful design and
studies!
!

q  Testbed & real experimentations are
needed to highlight realistic issues!

