End-to-End QoS on Shared Clouds for Highly Dynamic, Large-Scale Sensing Data Streams

Rafael Tolosana-Calasanz, José A. Bañares, Congduc Pham and Omer F. Rana

Universidad de Zaragoza Zaragoza, Spain

Université de Pau Pau, France

Cardiff University Cardiff, United Kingdom

May 13rd, 2012

DPMSS 2012 - CCGrid 2012

Ottawa, Canada

Sensor Data Aggregation

Adaptive infrastructure for sensor data analysis

- Multiple concurrent data streams
- Variable properties: rate and data types; various processing models
- Support for in-transit analysis
- Support for admission control & flow isolation at each node

Adaptive infrastructure for sensor data analysis

- Multiple concurrent data streams
- Variable properties: rate and data types; various processing models
- Support for in-transit analysis
- Support for admission control & flow isolation at each node

Key focus

- Develop a **model** and a **system architecture** to support adaptive stream processing
- Model is executable directly and can be combined with monitoring

1542

Zaragoza

• Model behaviour can be modified through an external controller

Rafael Tolosana-Calasanz et al. End-to-End QoS on Shared Clouds for Highly Dynamic, Large-Scale DPMSS'12 3 / 22

Outline

Background

- Petri nets
- Reference nets
- In-transit Analysis
- System Architecture & Model
 - Token Bucket
 - Autonomic Data Transfer Service
- 4 Evaluation
- 5 Conclusions and Future Work

Background

Outline

System Architecture & Model

- Token Bucket
- Autonomic Data Transfer Service
- 4 Evaluation

Conclusions and Future Work

Petri nets

Characteristics

- directed bipartite graph
- 2 types of nodes: places and transitions
- arcs: place-transition, transition-place
- tokens: move on the graph
- static structural nature

Characteristics

- tokens can be nets dynamic hierarchies of Petri nets
- Java inscriptions & Renew interpreter
- we can build executable rapid prototype models concurrency

Outline

- Petri nets
- Reference nets

In-transit Analysis

- System Architecture & Model
- Token Bucket
- Autonomic Data Transfer Service
- 4 Evaluation
- Conclusions and Future Work

In-transit Analysis

Characteristics

- Perform partial/full processing of data from source to destination
- Benefit from availability of slack in the network i.e. availability of excess capacity at processing nodes
- Useful to support: filtering, statistical analysis (min, max, avg) over a window size i.e. common (often repeated) operations
- Same operation available at multiple nodes location of analysis not important

Outline

- Petri nets
- Reference nets

In-transit Analysis

System Architecture & Model

- Token Bucket
- Autonomic Data Transfer Service

Conclusions and Future Work

System Architecture

- 3 key components / node: Token Bucket, Processing Unit & output streaming
- Each component provides various tunable parameters these can be externally modified

System Architecture

Rafael Tolosana-Calasanz et al. End-to-End QoS on Shared Clouds for Highly Dynamic, Large-Scale DPMSS'12 12 / 22

Some rules as an example

1	E: B_i over threshold C: SLA_i allows control the addition of N_i re- sources	$\Delta NumRes_{ij} = min(N_i, (\lambda_{ij} - R_{ij})/\hat{\delta_{ij}})$ $\Delta R_{ij} = \lambda_{ij} - R_{ij}$
2	E: B_i over threshold C: SLA_i allows control the use of free resources	$\Delta R_{ij} = \sum_{i=1}^{n} NumRes_{ij} * \hat{\delta_{ij}} - \sum_{i=1}^{n} R_{ij}$

Token Bucket Behaviour

- Two key parameters of interest: R and b.
- Behaviour is dictated by changes in these two parameters.

Token Bucket & Processing Units

Autonomic Data Transfer Service

Renew Model

Rafael Tolosana-Calasanz et al. End-to-End QoS on Shared Clouds for Highly Dynamic, Large-Scale DPMSS'12 17 / 22

Evaluation

Outline

1 Background

Reference nets

In-transit Analysis

System Architecture & Model

- Token Bucket
- Autonomic Data Transfer Service

4 Evaluation

Conclusions and Future Work

Evaluation

Experiments

Rafael Tolosana-Calasanz et al. End-to-End QoS on Shared Clouds for Highly Dynamic, Large-Scale DPMSS'12 19 / 22

Outline

1 Background

Reference nets

In-transit Analysis

System Architecture & Model

- Token Bucket
- Autonomic Data Transfer Service

4 Evaluation

5 Conclusions and Future Work

Conclusions and Future Work

Conclusions

- in-transit processing of multiple data streams over a shared (elastic) infrastructure
- dynamic Token Bucket (admission control): support of variable bursts
- elastic Processing Unit: add / reduce computational resources
- Autonomic Data Transfer Service: adaptive transfers
- Controller: monitors & modifies behaviour
 - Rule based but can use other strategies (i.e. reinforcement learning)
 - QoS(node 1) + ... + QoS(node n) ≠ end-to-end QoS i.e. a we consider a hierarchical control strategy (but on-going!)

Conclusions and Future Work

Conclusions

- in-transit processing of multiple data streams over a shared (elastic) infrastructure
- dynamic Token Bucket (admission control): support of variable bursts
- elastic Processing Unit: add / reduce computational resources
- Autonomic Data Transfer Service: adaptive transfers
- Controller: monitors & modifies behaviour
 - Rule based but can use other strategies (i.e. reinforcement learning)
 - QoS(node 1) + ... + QoS(node n) ≠ end-to-end QoS i.e. a we consider a hierarchical control strategy (but on-going!)

Future Work

- Currently validating in an Electrical Vehicles scenario
- Focus on pipeline MoC applicable to other workflow engines where data transfer can be modified

End-to-End QoS on Shared Clouds for Highly Dynamic, Large-Scale Sensing Data Streams

Rafael Tolosana-Calasanz, José A. Bañares, Congduc Pham and Omer F. Rana

Universidad de Zaragoza Zaragoza, Spain

Université de Pau Pau, France

Cardiff University Cardiff, United Kingdom

May 13rd, 2012

DPMSS 2012 - CCGrid 2012

Ottawa, Canada