Revenue Models for Streaming Applications over Shared Clouds

Rafael Tolosana-Calasanz, José A. Bañares, Congduc Pham and Omer F. Rana

Universidad de Zaragoza Zaragoza, Spain

Université de Pau Pau, France

Cardiff University Cardiff, United Kingdom

July 14th, 2012

C4BB4C 2012 - ISPA 2012

Madrid, Spain

Sensor Data Aggregation

Adaptive infrastructure for sensor data analysis

- Multiple concurrent data streams with SLA
- Variable properties: rate and data types; various processing models
- Support for in-transit analysis, enforcing QoS
- Support for admission control & flow isolation at each node
- In case of QoS violation, penalisation

Adaptive infrastructure for sensor data analysis

- Multiple concurrent data streams with SLA
- Variable properties: rate and data types; various processing models
- Support for in-transit analysis, enforcing QoS
- Support for admission control & flow isolation at each node
- In case of QoS violation, penalisation

Key focus

- Understanding **revenue models** for in-transit analysis
- Understanding the impact on **faults** on such a revenue model

Universidad

Zaragoza

UNIVERSITY

Outline

Background

- Petri nets
- Reference nets
- In-transit Analysis
 - 3 System Architecture & Revenue Model
 - Token Bucket
 - Autonomic Data Transfer Service
 - 4 Evaluation
 - 5 Conclusions and Future Work

Outline

In-transit Analysis

System Architecture & Revenue Model
Token Bucket

• Autonomic Data Transfer Service

4 Evaluation

Conclusions and Future Work

Petri nets

Characteristics

- directed bipartite graph
- 2 types of nodes: places and transitions
- arcs: place-transition, transition-place
- tokens: move on the graph
- static structural nature

Reference nets

Characteristics

- tokens can be nets dynamic hierarchies of Petri nets
- Java inscriptions & Renew interpreter
- we can build executable rapid prototype models concurrency

Outline

- Petri nets
- Reference nets

In-transit Analysis

- System Architecture & Revenue Model
 - Token Bucket
 - Autonomic Data Transfer Service
- 4 Evaluation
- Conclusions and Future Work

In-transit Analysis

Characteristics

- Perform partial/full processing of data from source to destination
- Benefit from availability of slack in the network i.e. availability of excess capacity at processing nodes
- Useful to support: filtering, statistical analysis (min, max, avg) over a window size i.e. common (often repeated) operations
- Same operation available at multiple nodes location of analysis not important

Outline

- Petri nets
- Reference nets

In-transit Analysis

- System Architecture & Revenue Model
 - Token Bucket
 - Autonomic Data Transfer Service

Conclusions and Future Work

System Architecture

- 3 key components / node: Token Bucket, Processing Unit & output streaming
- Each component provides various tunable parameters these can be externally modified

System Architecture

Rafael Tolosana-Calasanz et al. Revenue Models for Streaming Applications over Shared Clouds C4BB4C'12

Token Bucket

Token Bucket Behaviour

- Two key parameters of interest: R and b.
- Behaviour is dictated by changes in these two parameters. ۲

Token Bucket & Processing Units

Autonomic Data Transfer Service

Revenue Model for a Cloud Provider

Elements of the Model

- **Revenue**: prices charged to clients $\sum_{a=1}^{n} \sum_{b=1}^{m} Pr(O_{ab})$
- **Cost**: for performing such operations $\sum_{a=1}^{n} \sum_{b=1}^{m} c(O_{ab})$
- Penalisation in case of QoS violation for client a: PSLA_a

Revenue Model for a Cloud Provider

Elements of the Model

- **Revenue**: prices charged to clients $\sum_{a=1}^{n} \sum_{b=1}^{m} Pr(O_{ab})$
- **Cost**: for performing such operations $\sum_{a=1}^{n} \sum_{b=1}^{m} c(O_{ab})$
- Penalisation in case of QoS violation for client a: PSLA_a

Minimizing the cost

• $\sum_{a=1}^{n} \sum_{b=1}^{m} Pr(O_{ab}) - min(\sum_{a=1}^{n} \sum_{b=1}^{m} c(O_{ab}), \sum_{a=1}^{n} PSLA_{a})$

Renew Model

Rafael Tolosana-Calasanz et al. Revenue Models for Streaming Applications over Shared Clouds C4BB4C'12 17 / 23

Dynamic Resource Provisioning

Conditions

- In the event of failure, **actions**: i) increase of resources, ii) assume penalisation
- In case of failure
 - there is an increase in execution time
 - resources are not released as expected other flows are affected
- The action that minimises cost will be taken

Dynamic Resource Provisioning

Conditions

- In the event of failure, **actions**: i) increase of resources, ii) assume penalisation
- In case of failure
 - there is an increase in execution time
 - resources are not released as expected other flows are affected
- The action that minimises cost will be taken

Model extension

• initial estimated NumRes: $NumRes_j = \sum_{i=1}^n R_i / \hat{\delta}_{ij}$

• real-time estimated NumRes: $Num\hat{R}es_j = \sum_{i=1}^n R_i/\delta_{ij}$

UTINCI SIUGU

Zaragoza

Evaluation

Outline

1 Background

Reference nets

In-transit Analysis

- System Architecture & Revenue Mode
 - Token Bucket
 - Autonomic Data Transfer Service

4 Evaluation

Conclusions and Future Work

Evaluation

Experiments

Outline

1 Background

- Petri nets
- Reference nets

In-transit Analysis

- System Architecture & Revenue Model
 - Token Bucket
 - Autonomic Data Transfer Service

4 Evaluation

5 Conclusions and Future Work

Conclusions and Future Work

Conclusions

- in-transit processing of multiple data streams over a shared (elastic) infrastructure
- dynamic Token Bucket (admission control): support of variable bursts
- elastic Processing Unit: add / reduce computational resources
- Autonomic Data Transfer Service: adaptive transfers
- Analyse Revenue models in the presence of faulty resources
 - two actions: i) add more resources, ii) assume penalisations
 - the action that minimises cost will be taken

Conclusions and Future Work

Conclusions

- in-transit processing of multiple data streams over a shared (elastic) infrastructure
- dynamic Token Bucket (admission control): support of variable bursts
- elastic Processing Unit: add / reduce computational resources
- Autonomic Data Transfer Service: adaptive transfers
- Analyse Revenue models in the presence of faulty resources
 - two actions: i) add more resources, ii) assume penalisations
 - the action that minimises cost will be taken

Future Work

- Currently validating in an Electrical Vehicles scenario
- Considering bursts, variable income data rates
- Trying to minimise the number of resources: Green computing

Revenue Models for Streaming Applications over Shared Clouds

Rafael Tolosana-Calasanz, José A. Bañares, Congduc Pham and Omer F. Rana

Universidad de Zaragoza Zaragoza, Spain

Université de Pau Pau, France

Cardiff University Cardiff, United Kingdom

July 14th, 2012

C4BB4C 2012 - ISPA 2012

Madrid, Spain