
Revenue-based Resource Management on Shared
Clouds for Heterogenous Bursty Data Streams

Rafael Tolosana-Calasanz1, José Ángel Bañares1, Congduc Pham2, and Omer
F. Rana3

1 Dpto. de Informática e Ingenieŕıa de Sistemas
Universidad de Zaragoza, Spain rafaelt, banares@unizar.es

2 LIUPPA Laboratory
University of Pau, France congduc.pham@univ-pau.fr

3 School of Computer Science & Informatics
Cardiff University, United Kingdom o.f.rana@cs.cardiff.ac.uk

Abstract. When data from multiple sources (sensors) are processed
over a shared distributed computing infrastructure, it is necessary to
often provide some Quality of Service (QoS) guarantees to each data
stream. Service Level Agreements (SLAs) identify the cost that a user
must pay to achieve the required QoS, and a penalty that must be paid
to the user in case the QoS cannot be met. Assuming the maximisation
of the revenue as the provider’s objective, then it must decide which
streams to accept for storage and analysis; and how many (computa-
tional / storage) resources to allocate to each stream in order to improve
overall revenue. We propose an infrastructure for supporting QoS for
concurrent data streams to be composed of self-regulating nodes. Each
node features an envelope process to accept user streams; and a resource
manager to enable resource allocation, admission control and selective
SLA violations, while maximizing revenue.

Keywords: Data stream processing; Cloud computing; SLA Manage-
ment; Admission control; QoS provisioning

1 Introduction

The number of applications that need to process data continuously over long
periods of time has increased significantly over recent years. Often the raw data
captured from the source is converted into complex events – which are sub-
sequently further analysed. Such applications include weather forecasting and
ocean observation from sensors [?], text analysis (especially with the growing
requirement to analyse social media data, for instance), “Urgent Computing”
[?], and more recently data analysis from electricity meters to support “Smart
(Power) Grids” [?]. Data source (sensor) nodes can vary in complexity from
smart phones to specialist instruments, and can consist of sensing, data pro-
cessing and communication components. Data streams in such applications are
generally large-scale and distributed, and generated continuously at a rate that



cannot be estimated in advance. Scalability remains a major requirement for
such applications, to handle variable event loads efficiently. Data elements are
streamed from their source to their sink, and may be processed en-route (re-
ferred to in transit processing), rather than entirely at source /destination [?].
The benefit of such an approach is many fold: (i) to reduce power consumption
at source (which may have limited battery capacity) and sink (which may have
limited data storage space); (ii) enable the outcome of data analysis to be shared
between multiple users; (iii) enable optimization by moving the processing close
to the producers and consumers where applicable (consider an example where
there are multiple sensors within the same location, and the event processing
involves aggregation of events that are emitted by these sensors); (iv) alter the
processing rate at intermediate (in transit) nodes to achieve a particular QoS
requirement [?]; (v) combine data streams with archived data at intermediate
nodes; (vi) enable fault tolerance to be supported at intermediate nodes – thereby
providing an overall resilient infrastructure that masks faults generated due to
the generation of large data volumes (referred to as data inflation) or failure of
resources involved in data processing [?]; (vii) redirect event traffic to different
nodes according to network conditions or workload [?].

We assume an Event Processing Network (EPN) is composed of a sequence
of stages and datasets are streamed through that sequence (pipeline). Each EPN
stage is mapped to a node in the infrastructure, though a node can enact more
than one EPN stage. Using this approach, each node must be able to self-regulate
its behaviour dynamically through adaptive resource provisioning, i.e. resources
allocated for each incoming stream can be varied dynamically by a node con-
troller. Various existing approaches [?,?,?,?] identify how Cloud infrastructures
can be used to support data stream analysis. When multiple applications are
executed within the same shared elastic infrastructure, each stream must be
isolated from another and for the underlying coordination mechanism to adapt
the infrastructure to either: (i) run all instances without violating their partic-
ular Quality of Service (QoS) constraints; or (ii) indicate that, given current
resources, a particular instance cannot be accepted for execution. The QoS de-
mand of each stream is captured in a Service Level Agreement (SLA) – which
must be pre-agreed with each service provider prior to analysis. Such an SLA
identifies the cost that a user must pay to achieve the required QoS and a penalty
that must be paid to the user if the QoS cannot be met [?].

In previous works, we presented scenarios to validate the use of TB and the
adaptation of TB parameters to achieve SLA objectives. In [?], a scenario that
shows the role of TB for shaping the amount of data that subsequently for-
warded to computational resources was presented, allowing for bursts of data
while at the same time providing isolation of data streams. In [?], we subse-
quently demonstrate how a streaming pipeline, with a variation in the amount
of data generated (referred to as data inflation/deflation), can be supported
and managed using a dynamic control strategy at each node. Finally, in [?], we
analyse revenue models for supporting streaming under the presence of faulty
computational resources. These papers show main models developed using Petri



nets to specify the EPN and architectural components and the engine to enact
them[?]. In this paper, we extend previous work [?] by characterising a revenue
model for in-transit analysis. We propose the use of the TB model for estimating
the resources required to meet the SLA of each incoming data stream, extending
our previous use of the TB mechanism for event traffic shaping. The remainder
of this paper is structured as follows. Section ?? describes revenue models for
in-transit analysis and the characterization of resource requirements for QoS in
event processing applications. Section ?? shows the system architecture based on
the token bucket model and a rule-based SLA management of QoS. Section ??
shows our evaluation scenario and simulation results. In Section ??, the related
work is briefly discussed. Finally, conclusions are given in Section ??.

2 Revenue Models for in-transit Analysis

In-transit analysis provides a useful abstraction for separating data capture/use
and analysis, enabling different actors (i.e. service providers) to be involved in
each of these processes. Hence, data capture may be carried out by a different
actor compared to subsequent analysis – enabling multiple capabilities from dif-
ferent actors to be combined at different costs. Each actor may differ in their
ability to undertake particular types of analysis that meet varying QoS con-
straints – leading to different payments that must be made to them by a user to
achieve the overall operation.

In our formulation of this problem, we can consider a provider centric view
of costs incurred to provide function O. Where a shared Cloud infrastructure is
being used, a provider may serve multiple users using a common resource pool
through a “multi-tenancy” architecture, or offer multiple functions over their
shared infrastructure to one or more users. In both cases, the revenue for the
provider is the sum of all the prices Pr() charged to n users for accomplishing
m operations O,

∑n
i=1

∑m
j=1 Pr(Oij). The provider in turn incurs a cost for per-

forming such operations, c(Oij), but can also incur a financial penalty PSLAij

for user i when the QoS targets of operation Oij , identified in the SLA of user
stream i are not met. If we assume the objective of the provider is to maximise
revenue, then it must decide: (i) which user streams to accept for storage and
analysis; and (ii) how many resources (including storage space and computa-
tional capacity) to allocate to each stream in order to improve overall revenue
(generally over a time horizon). Both of these considerations are based on the
SLA that a user and provider have agreed to. By minimising the cost either due
to allocation of resources or to SLA penalty, we get the benefit function for the
provider as:

∑n
i=1

∑m
j=1 Pr(Oij) −

∑n
i=1

∑m
j=1 min(c(Oij), PSLAij) (Eq. 1)

We consider the SLA for each stream to contain: i) a desired QoS level for
each operation, Ldesiredij , ii) the minimum QoS level acceptable to that user
Lminij

≤ Ldesiredij
, and iii) the cost c(Oij)[k] for each QoS level Lk defined

by the service in the range [Lminij
, Ldesiredij

]. A provider incurs in a penalty
PSLAij , when it fails to meet the minimum level Lminij

for Oij . By minimising
the cost either due to allocation of resources or to PSLAij , the provider will



select an optimal QoS level kij for each operation Oij specified in the contract
such that, (i) the benefit function in Eq. (1) is maximized, and ii) the aggregated
number of resources required to provide each operation Oij [kij ] at the required
level does not exceed available resources at the provider node.

In general, in order to achieve resource allocation, all resources such as the
number of CPUs, disks, I/O bandwidth, buffer sizes and communication band-
width must be considered. As our QoS guarantees have throughput and delay
semantics, only computational resource (number of CPUs or virtual machines
allocated to a stream) consumption and buffer occupancy are considered.

3 System Architecture

The resource requirements imposed by each QoS contract level must be known
before utility optimization can be made. The utilization of resources are influ-
enced by three components [?,?,?]: (i) the profiling model used for the charac-
terization of the worst-case resource consumption, (ii) the scheduling mechanism
used to allocate resources to data streams, and (iii) the accuracy of determining
whether there will be enough resources for the aggregated demand. Our sys-
tem supports the processing of multiple concurrent streams over a shared elastic
infrastructure consisting of multiple processing nodes. Each node self-regulates
its computing resources to preserve QoS constraints using the three mentioned
components and optimizing revenue generation.

3.1 Architectural Components

A node, as depicted in Fig. ??, involves a combination of traffic shaping, com-
putation and data transfer capability. The Traffic shaping component regulates
the number of data elements entering into the computing resources, according
to the established QoS for each data stream. Traffic shaping is based on the use
of the Token bucket (TB) model [?]. A TB is characterized by 2 parameters: b
and R that are respectively the size of the bucket, and the token generation rate.
Tokens are generated and introduced in the bucket at the rate of R tokens/s.
Data are stored in the TB buffer until they can be forwarded to the computa-
tional resources for processing, based on the availability of one or more tokens
in the bucket. When data elements arrive at a rate r < R, the generated tokens
will build up in the bucket for future usage. In this way, a TB supports bursts
of traffic up to a regulated maximum (the amount of data sent cannot exceed
Rt + b) while isolating data streams from one another and enforcing QoS per
data stream. A more detailed description of the TB and its use in this architec-
ture can be found in [?]. The R parameter can be defined to be coincident with
the average throughput established for a data stream. For revenue generation
at a node, the TB model as an envelop process can be used to estimate cost
depending on the resources required during each control period T to process the
worst case traffic RT + b for each data stream [?]. However, determining the
effective number of computational resources (i.e. a pool of virtual machines at


