
WAZIUP: Co-funded by the Horizon 2020 Framework Programme of the European Union

	

www.waziup.eu	

	

	

Open	Innovation	Platform	for	IoT-Big	data	in	Sub-Sahara	

Africa	

Grant	Agreement	Nº		687607	

	

	

Report D2.1

Deliverable Title: Hardware selection and integration of
long-range connectivity for IoT and heterogeneous

networking building blocks

	 	

	 Responsible	Editor:	 UPPA	

	 Contributors:	 UPPA,	UI															

	 Document	Reference:	 WAZIUP	D2.1	–	Hardware	selection	and	integration	of	long-
range	connectivity	for	IoT	and	heterogeneous	networking	building	blocks	

	 Distribution:	 Public	

	 Version:	 1.1	

	 Date:	 07/02/2017	

	

	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	2	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	3	

CONTRIBUTORS	TABLE	

DOCUMENT	SECTION	 AUTHOR(S)	 REVIEWER(S)	
Section	1	 C.	PHAM,	UPPA	 M.	SHEIKHALISHAHI	
Section	2	 C.	PHAM,	UPPA	 S.	FATNASSI	
Section	3	 T.	TEIXEIRA,	UI	 C.	PHAM	
Section	4	 C.	PHAM,	UPPA	 O.	THIARÉ	
Section	5	 C.	PHAM,	UPPA	 C.	DUPONT	
Section	6	 C.	PHAM,	UPPA	 T.	TEIXEIRA	
Section	7	 M.	DIOP	AND	C.	PHAM,	UPPA	 F.	BAIDOO	
Section	8	 C.	PHAM,	UPPA	 P.	COUSIN	

	

DOCUMENT	REVISION	HISTORY		

Version	 Date	 Changes	
v1.1	 FEB	6TH,	2017	 PUBLIC	RELEASE	
v1.0	 JAN	31ST	,	2017	 FIRST	DRAFT	VERSION	FOR	INTERNAL	APPROVAL	
v0.5	 JAN	30TH	,	2017	 INTEGRATION	OF	REVIEWS	FOR	SECTION	7	
v0.4	 JAN	20TH	,	2017	 INTEGRATION	OF	REVIEWS	FOR	SECTION	1	AND	5	
v0.3	 JAN	19TH	,	2017	 INTEGRATION	OF	REVIEWS	FOR	SECTION	3,	6	AND	8	
v0.2	 JAN	15TH	,	2017	 INTEGRATION	OF	REVIEWS	FOR	SECTION	2,	4,	AND	6	
v0.1	 JAN	5TH	,	2017	 FIRST	RELEASE	FOR	REVIEW	
	 	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	4	

EXECUTIVE	SUMMARY	

This	deliverable	2.1	entitled	«	Hardware	selection	and	integration of	long-range	connectivity	
for	IoT	and	heterogeneous	networking	building	blocks	»	covers	the	achievements	of	the	first	
12	months	of	T2.1	and	T2.2.	It	will	be	structured	as	follows:	

• 2.	SENSING	SYSTEMS	AND	IOT	DEVICES:	HARDWARE	PLATFORM	:	reviews	the	
concept	of	WAZIUP	IoT	devices	and	describes	the	hardware	platforms	that	will	be	
targeted	by	WAZIUP.	

• 3.	IOT	CATALOGUE	FOR	HARDWARE	SELECTION	:	describes	the	IoT	catalogue	tools	for	
hardware	selection	and	simple	code	generation.	

• 4.	IOT	CONNECTIVITY	:	reviews	IoT	connectivity	technologies	and	challenges.	Will	
focus	on	the	long-range	LoRa	technology	that	will	be	used	in	WAZIUP.	

• 5.	WAZIUP	low-cost	IoT	platform	:	describes	the	software	libraries	for	long-range	
communications	and	sensor	management.	

• 6.	HETEROGENEOUS	NETWORKING	:	describes	how	heterogenous	networking	will	be	
managed,	especially	at	the	gateway	level.	

• 7.	TESTS	WITH	LORAWAN	AND	MINIMUM	INTEROPERABILITY	:	describes	our	
LoRaWAN	tests	and	how	miminum	interoperability	is	provided.	

	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	5	

TABLE	OF	CONTENTS	

1.	 Brief	review	of	WAZIUP	and	WP2	..	11	

1.1.	 WAZIUP	...	11	

1.2.	 WP2	..	11	

1.3.	 Deliverable	D2.1	...	12	

2.	 Sensing	systems	and	IoT	devices:	hardware	platform	...	13	

2.1.	 Sensor	platform	..	13	

2.1.1.	 Sensing	systems	and	IoT	devices	...	13	

2.2.	 Low-cost	hardware	platforms	for	DIY	IoT	...	15	

2.3.	 Hardware	selection	process	...	17	

3.	 IoT	catalogue	for	hardware	selection	..	18	

3.1.	 Concepts	...	18	

3.2.	 Back-end	...	19	

3.2.1.	 MongoDB	...	19	

3.2.2.	 MongoDB	Connector	...	20	

3.2.3.	 Authentication	...	21	

3.2.4.	 API	...	21	

3.2.5.	 Price	crawler	..	21	

3.3.	 Front-end	..	22	

3.3.1.	 Data	Input/Output	...	23	

3.3.2.	 Data	processing	...	24	

3.3.3.	 User	interface	..	24	

3.4.	 Manual	..	27	

3.4.1.	 MVP’s	menu	..	28	

3.4.2.	 Hardware	menu	...	31	

3.4.3.	 Other	menu	...	32	

3.4.4.	 New	element	...	34	

4.	 IoT	connectivity	..	36	

4.1.	 Introduction	..	36	

4.2.	 Brief	review	of	long-range	technologies	...	38	

4.3.	 LoRa	long-range	technology	...	39	

4.3.1.	 Physical	layer	...	39	

4.3.2.	 LoRaWAN	...	40	

4.3.3.	 LoRa	radio	modules	...	41	

4.4.	 Transmission	in	the	unlicensed	frequency	band	..	42	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	6	

5.	 WAZIUP	low-cost	IoT	platform	...	45	

5.1.	 IoT	platform's	objectives	..	45	

5.1.1.	 Deployment	scenarios	...	45	

5.1.2.	 Why	are	we	not	LoRaWAN	compliant?	...	46	

5.2.	 Low-cost	gateways	..	46	

5.3.	 Long-range	communication	library	...	47	

5.3.1.	 Improvements	to	the	Libelium	SX1272	library	..	47	

5.3.2.	 LoRa	modules	that	have	been	tested	..	48	

5.3.3.	 Radio	regulations	such	as	frequency	bands	and	duty-cycle	48	

5.3.4.	 LoRa	modes	...	48	

5.3.5.	 Minimum	function	set	to	build	a	long-range	end-device	49	

5.3.6.	 Packet	format	..	49	

5.4.	 Building	a	low-cost	IoT	device	..	50	

5.4.1.	 Software	integration	for	long-range	IoT	device	..	51	

5.4.2.	 Software	templates	for	quick	and	easy	appropriation	52	

5.4.3.	 Programming	the	board	..	52	

5.4.4.	 Customization	of	templates	..	55	

5.4.5.	 IoT	device	power	consumption	tests	...	56	

5.4.6.	 IoT	device	integration	for	outdoor	usage	..	57	

5.5.	 Building	a	low-cost	gateway	...	58	

5.5.1.	 Gateway	hardware	and	architecture	...	58	

5.5.2.	 Lower	level	radio	bridge	and	post-processing	block	interaction	60	

5.5.3.	 What	clouds	for	low-cost	IoT?	...	61	

5.5.4.	 Uploading	to	clouds	...	62	

5.6.	 Energy	requirements	of	the	whole	system	...	65	

5.6.1.	 Measured	energy	consumption	..	65	

5.6.2.	 Investigating	usage	of	solar	panels	..	66	

5.6.3.	 Internet	connectivity	with	2G/3G	shield/dongle	...	66	

5.7.	 Running	without	Internet	connectivity	...	67	

5.8.	 Software	and	tutorial	materials	available	on	the	github	..	68	

5.9.	 WAZIUP	demo	kit	..	69	

5.10.	 Minimum	Viable	Products	based	on	the	IoT	platform	..	72	

5.11.	 Overview	of	the	WAZIUP	platform	architecture	...	74	

6.	 Heterogeneous	networking	...	75	

6.1.	 Heterogeneity	with	legacy	short-range	radio	technologies	75	

6.2.	 Taking	into	account	data	from	other	radio	interfaces	..	77	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	7	

6.2.1.	 Use	case	with	IEEE	802.15.4	..	78	

6.2.2.	 Generalization	to	other	type	of	interfaces	..	79	

7.	 Tests	with	LoRaWAN	and	minimum	interoperability	...	80	

7.1.	 LoRaWAN	packet	format	and	requirements	..	80	

7.1.1.	 LoRaWAN	packet	format	...	80	

7.1.2.	 LoRaWAN	encryption	..	80	

7.2.	 Setting	up	a	LoRaWAN	gateway	:	the	Multitech	mConduit	81	

7.2.1.	 The	Multitech	mConduit	...	81	

7.2.2.	 The	mDot	...	87	

7.3.	 Providing	a	simple	LoRaWAN	interoperability	level	...	91	

7.3.1.	 Low-cost	IoT	device	...	91	

7.3.2.	 Low-cost	gateway	..	92	

7.3.3.	 From	LoRaWAN	mDot	to	low-cost	gateway	..	95	

8.	 Annexes	..	97	

8.1.	 Our	LoRa	FAQs	..	97	

8.2.	 Low-cost	LoRa	IoT	platform	part	list	...	98	

8.3.	 Tutorials	materials	..	99	

8.4.	 Keynote	talks	..	100	

8.5.	 Scientific	publications	...	101	

	

	 	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	8	

	

LIST	OF	FIGURES	

Figure	1	–	a	variety	of	physical	sensors	...	13	

Figure	2	–	Arduino	UNO	microcontroller	board	with	DHT22	physical	sensor	13	

Figure	3	–	IoT	Device	Integration	..	14	

Figure	4	–	Fish	Farming	...	15	

Figure	5	–	Arduino	ecosystem	...	16	

Figure	6	–	Original	Sparkfun	Arduino	Pro	Mini	(left)	and	a	Chinese	clone	(right)	16	

Figure	7	–	Teensy	boards	:	LC	and	3.1	...	17	

Figure	8	–	Back-end	overview	...	19	

Figure	9	–	Database	representation	..	20	

Figure	10	–	Price	crawler	...	22	

Figure	11	–	Front-end	overview	..	23	

Figure	12	–	Web	interface	layout	..	25	

Figure	13	–	Listing	of	all	the	sensors	...	26	

Figure	14	–	Parameter	information	...	26	

Figure	15	–	Help	mode	..	27	

Figure	16	–	Consulting	an	use	case	...	27	

Figure	17	–	Agriculture	MVP’s	...	28	

Figure	18	–	Agriculture	use	case	...	28	

Figure	19	–	List	of	all	actors	...	29	

Figure	20	–	Cattle	Rustling	report	...	30	

Figure	21	–	Hardware	solutions	for	Cattle	rustling	...	30	

Figure	22	–	List	of	all	boards	..	31	

Figure	23	–	Arduino	Nano	...	32	

Figure	24	–	Radio	communication	protocols	...	33	

Figure	25	–	Bluetooth	v4.2	..	33	

Figure	26	–	New	unit	...	34	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	9	

Figure	27	–	Navigation	overview	...	35	

Figure	28	–	Remote	sensing	scenario	with	1-hop	connectivity	to	the	gateway	36	

Figure	29	–	Energy	consumption	for	traditional	cellular	technologies	37	

Figure	30	–	Simplified	view	of	the	link	budget	of	a	wireless	transmission	37	

Figure	31	–	IEEE	802	wireless	technologies	and	LPWAN	...	38	

Figure	32	–	LoRa	throughput	and	sensitivity	for	various	BW	and	SF	values	39	

Figure	33	–	spectrogram	example	of	a	LoRa	transmission	..	40	

Figure	34	–	LoraWAN	typical	topology	..	41	

Figure	35	–	some	radio	module	built	from	SX127x	Semtech	chips	...	42	

Figure	36	–	ISM	band	per	region	...	42	

Figure	37	–	868MHz	unlicensed	band	restrictions	..	43	

Figure	38	–	additional	notes	..	43	

Figure	39	–	Traditional	Internet	access	scenario	(top),	without	Internet	access	(bottom)	45	

Figure	40	–	LoRa	mode	as	combination	of	BW	and	SF	..	49	

Figure	41	–	The	long-range	library	for	Arduino-compatible	boards	and	LoRa	radio	modules	50	

Figure	42	–	Dragino	LoRa	product	line	based	on	HopeRF	RFM95W	51	

Figure	43	–	Software	building	blocks	for	easy	integration	of	long-range	IoT	devices	51	

Figure	44	–	Simple	temperature	sensor		with	periodic	sensing	and	transmission	55	

Figure	45	–	power	consumption	and	low-power	tests	..	56	

Figure	46	–	Low-cost	hardware	integration	..	58	

Figure	47	–	Low-cost	single	channel	LoRa	gateway	..	59	

Figure	48	–	Gateway	architecture	...	59	

Figure	49	–	post-processing	block	template	...	60	

Figure	50	–	Post-processing	stage	with	Internet	connectivity.	...	61	

Figure	51	–	From	gateway	to	IoT	clouds	...	62	

Figure	52	–	Raspberry	power	consumption	(left),	10000mAh	USB	charging	pack	(right)	65	

Figure	53	–	Mass-market	integrated	USB	solar	charging	pack	..	66	

Figure	54	–	3G	shield	(left)	and	3G	dongle	(right)	...	66	

Figure	55	–	Gateway	without	Internet	access	...	67	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	10	

Figure	56	–	Autonomous	gateway	for	no-Internet	access	deployment	scenarios	67	

Figure	57	–	Fully	autonomous	cattle	rustling	application	...	68	

Figure	58	–	github	repository	for	IoT	devices	and	gateway	..	69	

Figure	59	–	WAZIUP	LoRa	demo	kit	...	69	

Figure	60	–	demo	gateway	(left)	and	demo	IoT	device	(right)	..	70	

Figure	61	–	Using	the	demo	kit	...	71	

Figure	62	–	Visualizing	real-time	data	with	the	embedded	web	server	71	

Figure	63	–	distribution	of	the	WAZIUP	demo	kit	...	72	

Figure	64	–	Generic	sensor	IoT	device	platform	..	72	

Figure	65	–	Minimum	Viable	Products	defined	in	WAZIUP	...	73	

Figure	66	–	Exemple	of	an	active	beacon	collar	system	for	cattle	rustling	applications	73	

Figure	67	–	IoT	platform	general	architecture	..	74	

Figure	68	–	IEEE	802.15.4	as	PHY/MAC	layer	in	various	short-range	technologies	75	

Figure	69	–	Various	integrated	sensors	with	embedded	IEEE	802.15.5	radios	76	

Figure	70	–	Short-range	(IEEE	802.15.4)	for	legacy	sensors	mixed	with	long-range	LoRa	76	

Figure	71	–	General	approach	for	heterogeneous	networking	...	77	

Figure	72	–	XBee	serial	gateway	..	79	

Figure	73	–	LoRaWAN	packet	format	..	80	

Figure	74	–	LoRaWAN	frame	assemby	process	...	81	

Figure	75	–	The	Multitech	Conduit	and	some	available	mCards	...	82	

Figure	76	–	Gateway	settings	..	87	

Figure	77	–	MultiConnect	mDot	..	87	

Figure	78	–	Device	settings	on	TTN	...	88	

Figure	79	–	Receiving	data	on	TTN	..	90	

	

LIST	OF	TABLES	

Table	1	–	Summary	of	energy	consumption	for	Pro	Mini	and	Teensy	boards	57	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	11	

1. BRIEF	REVIEW	OF	WAZIUP	AND	WP2	

1.1. WAZIUP	

WAZIUP	is	a	collaborative	research	project	using	innovative	technological	research	
applications	on	IoT	and	related	big	data	management	and	advanced	data	analytic	
techniques.	It	has	the	support	of	multiple	African	stakeholders	and	public	bodies	with	the	
aim	of	defining	a	new	innovation	space	to	advance	the	African	Rural	Economy.	The	potential	
of	IoT	and	Big	Data,	in	Sub-Saharan	Africa,	can	be	realized	only	if	the	cost	is	reasonable	as	
most	of	the	rural	population	in	the	Africa	is	at	the	poverty	level.	This	is	the	main	challenge	
that	WAZIUP	will	address.	In	addition,	WAZIUP	is	creating	developer	communities	and	
innovation	hubs	to	train,	adapt,	validate	and	disseminate	results.	WAZIUP's	technical	
partners	will	develop	methodologies,	tools,	software	libraries	and	"recipes"	for	building	low-
cost	IoT	and	data	analysis	platforms.	Tightly	involving	end-users	communities	in	the	loop,	
namely	rural	African	communities	of	selected	pilots,	will	ensure	quick	appropriation	and	
easy	customization	by	third	parties.	Furthermore,	WAZIUP	organizes	frequent	training	and	
Hackathon	sessions	in	the	sub-Saharan	African	region.	WAZIUP	will	tackle	the	challenges	
enlisted	below:			

• Challenge	1:	Innovative	design	of	the	IoT	platform	for	the	Rural	Ecosystem.	Low-cost,	
generic	building	blocks	for	maximum	adaptation	to	end-applications	in	the	context	of	
the	rural	economy	in	developing	countries.	

• Challenge	2:	Network	Management.	Facilitate	IoT	communication	and	network	
deployment.	Lower	cost	solutions	compared	to	state	of	the	art	technology:	privilege	
price	and	single	hop	dedicated	communication	networks,	energy	autonomous,	with	
low	maintenance	costs	and	long	lasting	operations.		

• Challenge	3:	Long	distance.	Dynamic	management	of	long	range	connectivity	(e.g.,	
cope	with	network	&	service	fluctuations),	provide	devices	identification,	
abstraction/virtualization	of	devices,	communication	and	network	resources	
optimization.	

• Challenge	4:	Big-data.	Exploit	the	potential	of	big-data	applications	in	the	specific	
rural	context.	

1.2. WP2	

The	objectives	of		WP2	are	to	co-design,	adapt	and	deploy	sensing	systems	with	low-power	
and	low-cost	long-range	(LR)	communication	and	networking	infrastructure.	WP2	will	set	a	
test-bed	in	UGB	for	validation	and	performance	evaluation	of	use	cases	in	various	rural	
areas.	The	outcomes	from	WP2	with	corresponding	tasks	are	listed	below:	

• T2.1	Design	and	adaptation	of	sensing	systems	considering	societal	and	
environmental	threat	-	design,	adapt	and	develop	sensing	systems	for	IoT	nodes	that	
will	be	deployed	and	tested	in	the	use	cases.	Produce	open-source	plug-&-sense	
platforms	for	fast,	easy	deployment	&	customization	to	use	cases.	Methodology	and	
tools	for	low-cost	design.	
	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	12	

• T2.2	Design	and	integration	of	heterogeneous	IoT	networking	-	integrate	the	
hardware	components	and	develop	the	software	building	blocks	for	generic	usage	of	
LR	radio	technologies.	Develop	and	evaluate	IoT	activity	scheduling	algorithms	that	
ensure	fairness	and	efficiency	in	heterogeneous	radio	technologies	communications.	
Data	management	for	seamlessly	supporting	intermittent	networking.	
	

• T2.3	Low-latency	and	low-energy	MAC	protocols	-	address	the	issue	of	achieving	low-
latency	and	low-energy	communications	with	the	combination	of	LR	and	
short/medium	range	radios.	Propose	and	evaluate	IoT	node	activity	scheduling	based	
on	the	timing	requirement	of	the	end	application.	
	

• T2.4	Open	IoT		test-bed	setup	and	benchmark	-	deploy	the	IoT	test-bed	featuring	LR	
IoT	device.	Provide	the	validation	infrastructure	for	internal	sub-tasks	(T2.1,	T2.2	and	
T2.3)	and	the	demonstrator	infrastructure	for	the	use	cases.	
	

• T2.5	Training	materials	and	tools	for	developer	community	-	address	the	training	and	
dissemination	part	of	WP2.	Developed	sensing	systems	and	software	will	be	
presented	and	explained	to	end-developers	and	end-users.	Organize	dedicated	Living	
Labs,	Tech	Events	and	Hackaton	to	boost	innovations	around	the	IoT	technologies	
and	the	WAZIUP	developed	solutions.	

1.3. Deliverable	D2.1	

This	deliverable	2.1	entitled	«	Hardware	selection	and	integration of	long-range	connectivity	
for	IoT	and	heterogeneous	networking	building	blocks	»	covers	the	achievements	of	the	first	
12	months	of	T2.1	and	T2.2.	It	will	be	structured	as	follows	:	

• 2.	SENSING	SYSTEMS	AND	IOT	DEVICES:	HARDWARE	PLATFORM	:	reviews	the	
concept	of	WAZIUP	IoT	devices	and	describes	the	hardware	platforms	that	will	be	
targeted	by	WAZIUP.	

• 3.	IOT	CATALOGUE	FOR	HARDWARE	SELECTION	:	describes	the	IoT	catalogue	tools	for	
hardware	selection	and	simple	code	generation.	

• 4.	IOT	CONNECTIVITY	:	reviews	IoT	connectivity	technologies	and	challenges.	Will	
focus	on	the	long-range	LoRa	technology	that	will	be	used	in	WAZIUP.	

• 5.	WAZIUP	low-cost	IoT	platform	:	describes	the	software	libraries	for	long-range	
communications	and	sensor	management.	

• 6.	HETEROGENEOUS	NETWORKING	:	describes	how	heterogenous	networking	will	be	
managed,	especially	at	the	gateway	level.	

• 7.	TESTS	WITH	LORAWAN	AND	MINIMUM	INTEROPERABILITY	:	describes	our	
LoRaWAN	tests	and	how	miminum	interoperability	is	provided.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	13	

2. SENSING	SYSTEMS	AND	IOT	DEVICES:	HARDWARE	PLATFORM	

2.1. Sensor	platform	

WAZIUP	mainly	focuses	on	sensing	systems	for	so-called	telemetry	applications	where	
physical	parameters	of	the	environment	is	measured.	In	this	section	we	will	briefly	introduce	
such	sensing	systems	that	will	be	at	the	core	of	WAZIUP	Use	Cases.	

WAZIUP	has	several	Use	Cases	that	focus	on	completely	different	issues,	therefore	imposing	
the	need	for	WAZIUP	to	be	very	flexible	in	terms	of	the	Hardware	required	to	tackle	each	Use	
Case.	So,	taking	this	into	account,	WAZIUP	needs	to	set	up	a	way	so	that	each	piece	of	
hardware	deployed	can	be	very	specific	to	the	particular	Use	Case,	so	that	WAZIUP	can	
reduce	the	costs	to	a	minimum.	[D1.1,	section	6.2.1]	

2.1.1. Sensing	systems	and	IoT	devices	

Sensing	the	environment	is	performed	by	specialized	physical	sensors.	Figure	1	shows	a	
variety	of	physical	sensors,	each	one	designed	to	measure	a	particular	physical	parameter:	
sound	level,	temperature,	air	humidity,	soil	conductivity/humidity,	dissolved	oxygen	level,...	
	

	

Figure	1	–	a	variety	of	physical	sensors	

Sensing	systems	are	then	generally	built	with	a	microcontroller	board	where	physical	sensors	
will	be	connected	and	driven	by	an	appropriate	program	running	on	the	board.	Figure	2	
shows	an	Arduino	UNO	microcontroller	board	with	a	DHT22	digital	physical	sensor.	

	

Figure	2	–	Arduino	UNO	microcontroller	board	with	DHT22	physical	sensor	

Image from http://cactus.io/hookups/sensors/temperature-humidity/dht22/hookup-arduino-to-dht22-temp-humidity-sensor

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	14	

Physical	sensors	are	either	analog	or	digital.	The	program	running	on	the	microcontroller	
board	will	«	read	»	the	analog	or	digital	value	from	the	I/O	pins	and	will	generally	convert	
this	value	into	meaningful	data	according	to	the	physical	sensor	reference	datasheet.	

The	IoT	Device	in	WAZIUP	is	the	device	that	will	be	monitoring	the	environment,	collecting	
and	processing	the	data	necessary	for	the	Use	Cases	and	then	communicate	them	to	the	
WAZIUP	Platform.	So,	it	will	have	communication,	processing	and	sensing	capabilities,	that	
means	an	IoT	Device	can	measure	one	or	more	parameter	from	the	environment,	processing	
those	parameters	by	generating	meaningful	data	and	then	communicates	the	data	by	
(possible)	different	means	(radio,	cable	link,	local	storage,	etc).	[D1.1,	section	6.2.1]	

These	 IoT	 Devices	 are	 composed	 by	 a	 group	 of	 hardware	 components,	 such	 as	 a	 board,	
sensor,	 radio	and	 interfaces	 (when	 it’s	needed).	 Each	 IoT	Device	 can	have	multiple	 sensors	
(and	 sensor	 interfaces)	and	also	multiple	 radios	 (and	 radio	 interfaces),	 as	 far	as	 the	board	
supports	it.	The	domains	in	WAZIUP	rely	on	data	gathered	from	the	environment	by	the	IoT	
Devices,	and	to	be	able	to	do	so,	the	IoT	Devices	need	to	be	composed	by	specific	hardware:	

• Sensor:	 used	 to	 collect	 data	 of	 physical	 parameters	 from	 the	 environment	 (e.g.	
Temperature,	Humidity,	etc.).	

• Interface:	 Required	 by	 some	 hardware	 to	 communicate	 (eg,	 converting	 sensor	
conductivity	into	an	analog	signal).	

• Board:	Main	component	of	an	IoT	Device.	It’s	used	to	receive	the	data	gathered	from	
the	sensor(s),	process	it	as	defined	and	forward	it	using	the	radio(s)	available.	

• Radio:	This	component	is	used	for	communication	purposes,	so	that	the	IoT	Device	
can	receive	requests	and	send	data	from/to	the	WAZIUP	Platform.	
	

In	terms	of	readings	from	the	 IoT	Device,	 it	uses	the	sensor	(or	each	one,	 in	case	of	having	
more	 than	 1)	 to	 gather	 data.	 This	 process	 is	 made	 through	 measurements,	 which	 are	
composed	by	the	following	elements:	

• Parameter:	Physical	input	that	is	read	from	the	environment	(e.g.,	Temperature,	
Humidity,	etc.).	

• Unit:	How	the	data	obtained	by	the	measurement	is	represented	(e.g.,	°F,	°C).	
	

Figure	3	shows	the	overall	picture	regarding	the	hardware	components	of	an	IoT	Device	and	
how	 it	 relates	 to	 the	 WAZIUP	 domains	 and	 to	 the	 measurements	 gathered	 form	 the	
environment.		

	

Figure	3	–	IoT	Device	Integration	

BoardSensor

Interface

Radio

°F
°C

Parameter Unit

IoT Device

Domains

Measurements

Interface

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	15	

The	following	example	describes	a	use	case	from	the	“Fish	Farming”	domain,	presenting	an	
IoT	 device	 that	 can	 be	 used	 on	 this	 situation.	 The	 main	 purpose	 of	 the	 IoT	 Device	 here	
specified	 is	 to	 collect	 data	 from	 the	 water.	 Among	 several	 parameters,	 the	 water	
temperature	(°C)	is	measured	by	using	an	IoT	Device	composed	by	the	following	hardware:	

• PT-1000	Temperature	Sensor:	Its	conductivity	changes	with	the	water	temperature.	
• PT-1000	Temperature	Module:	It	translates	the	sensor	conductivity	into	a	

temperature	value	
• Arduino	UNO	Board:	Main	board	of	the	IoT	Device	
• Lora	RF	Module:	Enables	the	communication	from/to	the	IoT	Device	
	

	

Figure	4	–	Fish	Farming	

[D1.1,	section	6.2.2]	

2.2. 	Low-cost	hardware	platforms	for	DIY	IoT	

The	maturation	of	the	IoT	market	is	happening	in	many	developed	countries.		While	the	cost	
of	IoT	devices	can	appear	reasonable	within	developed	countries	standards,	they	are	
definitely	still	too	expensive	for	very	low-income	sub-saharan	ones.	The	cost	argument,	
along	with	the	statement	that	too	integrated	components	are	difficult	to	repair	and/or	
replace	definitely	push	for	a	Do-It-Yourself	(DIY)	and	"off-the-shelves"	design	orientation.	

The	world-wide	availability	of	low-cost,	open-source	hardware	platforms	such	as	Arduino-
like	boards	is	clearly	an	opportunity	for	building	low-cost	IoT	devices	from	consumer	market	
components.	In	addition	to	the	cost	argument	such	mass-market	board	greatly	benefits	from	
the	support	of	a	world-wide	and	active	community	of	developers.	This	last	argument	is	very	

important	and	it	must	be	kept	in	mind	that	software	can	sometime	be	more	important	

than	hardware	because	developing	drivers	and	specific	libraries	is	a	very	hard	and	time-

consuming	task.	

Figure	5	shows	a	selected	set	of	the	genuine	Arduino	ecosystem	with	various	Arduino	board	
models	and	the	programming	IDE	that	accepts	pluggins	from	a	larger	variety	of	Arduino-

RadioBoardInterfaceSensor

Lora 868 ModuleArduino UNOTemp. modulePT1000 Sensor

Fish Farming
As fish farmer I want to
know about water quality …

°C

Water Temperature

IoT Device

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	16	

compatible	boards	:	Teensy,	Sparkfun,	Seeeduino,	SODAQ,	Adafruit	Feather,	RFduino,	
Ideetron	Nexus,	Galileo,…	
	

	

Figure	5	–	Arduino	ecosystem	

A	non-exhaustive	list	of	Arduino-compatible	boards	is	available	at	
https://en.wikipedia.org/wiki/List_of_Arduino_boards_and_compatible_systems.	These	
boards	can	be	compatible	either	at	the	hardware	or	at	the	software	level.	

The	core	Arduino	board	ecosystem	consists	in	large	form	boards	(UN0,	MEGA,	ZERO,	DUE)	
and	small	form	boards	(MICRO/MINI,	PRO	MINI,	NANO).	Large	boards	are	suitable	for	testing	
and	first	step	prototyping	while	small	boards	can	be	used	for	higher	integrated	prototypes,	
close	to	final	product.	For	instance,	a	small	board	(18mmx33mm)	like	the	Arduino	Pro	Mini	
based	on	an	ATmega328	microcontroller	offers	an	excellent	price/performance/energy	
tradeoff	and	can	provide	a	low-cost	platform	for	generic	sensing	IoT	with	LoRa	long-range	
transmission	capability	for	a	total	of	less	than	15	euro.	Figure	6	shows	the	original	Sparkfun	
Pro	Mini	board	on	the	left.	Thanks	to	its	open-source	design	and	high	versatility,	there	are	
many	Chinese	clones	available	at	a	very	low-cost	(less	than	1.5	euro),	see	Figure	6	(right).	

	 	 	

Figure	6	–	Original	Sparkfun	Arduino	Pro	Mini	(left)	and	a	Chinese	clone	(right)	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	17	

The	Arduino	Pro	Mini	exists	in	3.3v	and	8MHz	version	to	further	reduce	the	energy	
consumption.	For	all	these	reasons,	we	selected	the	Arduino	Pro	Mini	as	the	generic	

platform	for	developing	low-cost	IoT	device	for	WAZIUP	Use	Cases.	

However,	the	core	ATmega328	microcontroller	has	only	2KB	of	memory	which	can	become	a	
limiting	factor	for	some	memory-demanding	applications.	In	searching	for	a	board	with	more	
memory,	we	also	have	to	keep	in	mind	the	Arduino-compatible	issue,	the	energy	
consumption	issue	and	the	availability	of	libraries.	We	selected	the	Teensy	boards	that	are	

compatible	at	the	software	level	with	most	of	the	Arduino	libraries	and	can	be	

programmed	within	the	Arduino	IDE.	They	feature	more	recent	microcontrollers	with	

more	memory,	more	power	efficiency	and	more	advanced	power	management	

possibilities.	Figure	7	shows	the	Teensy	LC	(left)	and	the	Teensy	3.1	(right)	boards	that	have	
the	same	size	than	the	Pro	Mini.		

The	Teensy	LC	costs	about	10	euro	while	the	Teensy	3.1	costs	about	16	euro.	Apart	from	the	
cost	factor,	the	amount	of	memory	required	by	the	application	will	be	the	determining	
factor	for	choosing	between	the	LC	or	the	3.1	board	as	both	have	processing	capabilities	that	
are	well	above	what	if	usually	needed	for	sensing	applications.	The	Teensy	LC	has	much	
lower	power	consumption	than	the	3.1	therefore	if	8KB	of	memory	is	sufficient,	the	Teensy	
LC	is	the	board	of	choice.	
	

	

Figure	7	–	Teensy	boards	:	LC	and	3.1	

	

2.3. Hardware	selection	process	

In	WP2,	the	integration	of	sensing	hardware	for	a	specific	application	domain	will	be	realized	
by	an	IoT	Catalogue	tool	that	will	list	a	large	variety	of	physical	sensors	with	their	
approximate	price	and	requirements	to	ease	the	decision-making	and	design	process.	The	
final	choice	will	be	left	to	the	integrator	person	but	once	the	choice	has	been	realized,	the	
IoT	Catalogue	can	also	help	in	generating	code	for	the	management	the	physical	sensors.	
These	generated	code	can	then	be	integrated	into	the	IoT	generic	templates.	

The	IoT	Catalogue	is	described	in	the	next	Section.	

Teensy LC
48	MHz	Cortex-M0+
8K of RAM memory

Teensy 3.1
72	MHz	Cortex-M4
64KB	of RAM	memory

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	18	

3. IOT	CATALOGUE	FOR	HARDWARE	SELECTION	

In	the	last	years,	we	have	witnessed	an	unprecedented	growth	in	the	number	of	IoT	devices	
used	among	different	domains	including	healthcare,	agriculture,	smart	cities,	etc.	Each	
domain	has	its	own	set	of	applications	where	it	is	necessary	to	collect	and	process	
information	about	an	environment	with	the	purpose	of	producing	an	output	which	is	used	to	
improve	the	knowledge	for	that	specific	domain.	

Finding	a	solution	could	be	challenging,	considering	the	complexity	and	variety	of	devices	
available	on	the	market.	The	purpose	of	the	IoT	Catalogue	is	to	help	users	on	the	process	of	
choosing	the	most	suitable	devices.	In	this	chapter,	we	explain	which	are	the	components	
represented	in	the	tool,	how	they	are	related	each	other,	how	the	tool	stores	information	of	
each	element	and	how	stored	data	is	processed	and	combined	with	the	purpose	of	
producing	meaningful	information.	Instructions	are	also	provided	regarding	the	usage	of	the	
tool.	

3.1. Concepts	

For	each	case,	when	information	is	being	collected	from	the	environment,	a	specific	solution	
must	be	assembled	which	consists	in	a	group	of	IoT	devices	that	are	working	as	a	single	
solution	capable	of	sensing,	processing,	storing	and	transmitting	data.	The	IoT	Catalogue,	
based	on	a	problem	defined	by	the	user,	can	present	several	solutions	with	different	costs,	
levels	of	complexity,	etc.	

All	the	components	used	in	a	solution	are	represented	by	the	IoT	Catalogue	with	detailed	
information,	including	manufacturer,	product	page	and	its	vendors	allowing	the	user	to	
choose	where	to	buy	the	component	based	on	the	store	location,	price,	etc.	Currently	the	
components	are	divided	among	the	following	types:	sensor,	radio,	interface	and	board.	Each	
type	is	also	associated	with	specific	information.	

• Sensor:	is	used	to	perform	measurements	by	collecting	information	from	the	
environment.	In	the	IoT	Catalogue	each	sensor	is	represented	by	the	parameters	it	
measures	and	which	units	are	used	(eg.	Atmospheric	temperature	using	°C).	

• Interface:	is	a	component,	usually	a	shield,	required	by	some	sensors	to	
communicate	with	the	board.	

• Board:	receives	data	coming	from	the	sensors/interfaces,	processes	them.	Data	can	
be	stored	and/or	transmitted.	

• Radio:		is	used	to	transmit	data	processed	by	the	board.	This	component	could	be	
part	of	a	solution	when	considering	the	deployment	in	remote	areas.	

In	the	IoT	Catalogue	several	applications	are	considered	taking	into	account	different	
environments,	so	all	the	physical	inputs	measured	have	to	be	taken	into	consideration	and	
they	are	represented	using	parameters.	

• Parameter:	represents	the	physical	input	collected	from	the	environment	and	which	
units	are	used.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	19	

• Unit:	gives	information	on	how	to	interpret	a	parameter	and	it	could	change	taking	
into	account	the	order	of	magnitude	of	the	measured	value,	the	type	of	
measurement,	etc.	A	unit	could	be	related	with	another	(eg:	V	<->	1000mV).	

One	of	the	purposes	of	the	IoT	Catalogue	is	to	propose	solutions	based	on	issues	described	
by	use	cases	and	domains:	

• Use	case:	gives	information	about	a	specific	problem	along	with	the	application	
domain,	the	target	and	the	parameters	that	are	useful	to	measure,	taking	into	
account	the	context	of	the	problem.	

• Domain:	the	issues	described	by	the	various	use	cases	of	the	IoT	Catalogue	are	
grouped	into	several	applications	domains:	Agriculture,	Environment,	etc.	

3.2. Back-end	

The	back-end	is	responsible	for	storing	all	the	data	used	by	the	IoT	Catalogue	and	also	to	
provide	an	interface	to	the	end	user.	This	back-end	is	based	on	Node.js	a	JavaScript	runtime	
environment,	which	provides	all	the	required	services	such	as	storage,	user	authentication	
and	rest	API.	

The	Figure	8	gives	an	overview	of	all	the	components	that	are	part	of	the	back-end	which	are	
responsible	for	data	storage,	data	access,	user	authentication	and	JSON	rest	API.	All	of	these	
components	are	working	together	and	are	combined	into	a	Node.JS	application.	

	

Figure	8	–	Back-end	overview	

3.2.1. MongoDB	

Data	used	in	the	IoT	Catalogue	are	represented	through	JSON	objects	that	are	stored	on	a	
document-oriented	database.	Each	document	can	contain	one	or	more	fields,	including	
arrays,	binary	data	and	sub-documents.	MongoDB	database	is	used	as	it	is	a	widely	used	

Back-end

Authentication

API

MongoDB
Connector MongoDB

Price	
crawler

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	20	

open-source	database.	Figure	9	shows	the	data	model	used	to	represent	and	modulate	the	
existing	objects.	

	

	

Figure	9	–	Database	representation	

3.2.2. MongoDB	Connector	

This	component	establishes	the	communication	between	the	mongoDB	server	and	the	
node.js	application,	both	running	in	the	back-end.	It	contains	the	settings	required	to	
establish	the	connection	with	the	mongoDB	server	and	the	methods	used	to	insert,	delete	
and	update	data	from	the	database	using	the	following	methods.	

• mongoConnect:	establishes	the	connection	with	the	mongoDB	server.	In	case	of	
failure	the	function	is	going	to	retry	the	connection	every	second.	

• insertMongoDoc:	adds	new	data	to	the	database.	

• updateMongoDoc:	updates	an	existing	document	based	on	a	given	id.	

• deleteMongoDoc:	deletes	a	document	from	the	database	with	the	given	id.		

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	21	

3.2.3. Authentication	

A	user	can	be	authenticated	on	the	IoT	Catalogue.	Without	authentication,	the	tool	is	
available	in	public	mode	where	the	user	has	only	limited	access	to	features.	With	
authentication	the	user	has	access	to	further	information	and,	depending	on	the	privileges,	
the	user	will	be	able	to	edit	and	insert	information	on	the	IoT	Catalogue.	Actually	the	
authentication	is	supported	by	username/password	or	using	a	google	account	and	there	are	
currently	three	types	of	users:	

• Read:	has	read	only	access	to	all	the	components	including	the	use	cases.	

• Write:	has	read	and	write	access	to	all	components	including	the	use	cases.	

• Admin:	besides	the	read	and	write	access,	has	also	access	to	a	user	administration	
page.	

The	authentication	is	based	on	Passport.JS	which	is	an	authentication	middleware	that	uses	
the	passport-local	strategy	for	user/password	login	and	the	passport-google-oauth	strategy	
for	login	with	a	google	account.	

3.2.4. API	

It	specifies	the	communication	and	interaction	of	the	IoT	Catalogue	with	the	user	and	
external	applications.	This	is	a	REST	API	which	works	with	JSON	messages	through	the	
following	services:	

• POST	-	/login:	to	sign	in	using	a	username/password.	

• GET	-	/auth/google:	to	sign	in	using	a	google	account.	

• GET	-	/data:	to	retrieve	information	stored	in	the	database.	

• POST	-	/data:	to	add,	delete	or	modify	information	from	the	database.	Only	available	
for	authenticated	users.	

The	API	is	hosted	using	the	library	Express.JS	which	is	a	web	application	framework	that	
provides	a	set	of	features	for	web	applications.	

3.2.5. Price	crawler	

The	IoT	Catalogue	contains	information	about	the	vendors	for	each	component	(sensor,	
interface,	radio	and	board)	and	stores	data	with	its	name,	price	and	a	link	to	the	vendor’s	
page.	Taking	into	account	that	the	information	of	a	specific	vendor	could	be	outdated	(new	
price,	retired	product,	etc)	a	crawler	is	available	to	ensure	the	product	contains	the	last	
updated	price.	

• The	price	crawler	receives	from	the	IoT	Catalogue	information	about	the	commercial	
details	of	a	product.	

• The	price	crawler	requests	the	information	about	the	prices	from	the	product	pages	
for	each	vendor.	

• The	price	crawler	receives	the	new	prices.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	22	

• If	the	new	prices	are	different	from	the	previous	prices,	the	updated	prices	are	sent	
back	to	the	IoT	Catalogue	to	update	the	product	info.	

• This	process	is	then	repeated	for	the	next	product.	

	

	

Figure	10	–	Price	crawler	

The	price	crawler	is	scheduled	to	run	every	day	and	is	supported	by	the	information	
available	in	RequestQuery	which	tells	to	the	price	crawler	how	to	retrieve	data	from	each	
vendor	site	including	the	price	value,	currency	and	availability.	

This	crawler	is	based	on	the	Cheerio	library,	a	jQuery	implementation	on	the	server	side	
allowing	to	extract	information	from	HTML	documents,	and	on	the	node-schedule	library	
which	is	a	job	scheduler	for	Node.JS	used	to	run	the	price	crawler	automatically	every	day	at	
a	specific	time.	

3.3. Front-end	

The	front-end	allows	the	interaction	between	the	IoT	Catalogue	and	the	end-user	by	
providing	a	web	interface.	When	access	to	the	tool	is	available	in	guest	mode	it	is	possible	to	
consult	information	about	different	elements.	When	logged	in	and	authenticated,	it	is	
possible	to	add	or	edit	data	about	the	stored	components.	The	use	cases	which	are	available	
under	the	MVP’s	are	also	available	to	edit	and	consult.	

This	front-end	is	divided	into	3	components:	data	input/output	which	is	used	to	receive	and	
send	data	to	the	back-end;	data-processing	which	is	used	to	process	and	combine	the	data	
available	and	user	interface	which	receives	the	inputs	given	by	the	user	and	displays	the	
information	requested	by	the	user.	An	overview	is	given	in	the	Figure	11.	

SequenceDiagram1interaction

IoT Catalogue Price Crawler Product Page

1 : Product comercial details

2 : Price info request

3 : New prices

4 : Updated prices

Collaboration1::Interaction1::SequenceDiagram1

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	23	

	

Figure	11	–	Front-end	overview	

Each	component	is	implementd	with	different	libraries:	

• jQuery:	a	JavaScript	library	used	on	the	manipulation	of	HTML	documents,	event	
handling,	AJAX	and	animation.	

• jQuery	UI:	a	set	of	user	interface	interactions,	effects,	widgets	and	themes	built	on	
the	top	of	the	jQuery	library.	

• Bootstrap:	an	HTML,	CSS	and	JavaScript	framework	used	on	the	design	of	responsive	
web	interfaces.	

• DataTables:	a	jQuery	plugin	used	to	provide	advanced	interaction	controls	and	
enhanced	data	visualization	to	the	HTML	tables	of	the	catalogue.	

• Mustache.JS:	a	JavaScript	based	template	system	which	is	used	for	form	rendering.	

• Chosen:	a	search	engine	for	select	boxes,	making	its	usage	simpler.	

• Showdown:	a	JavaScript	based	markdown	to	HTML	converter.	

• Moment.JS:	a	parser	to	manipulate	dates	in	JavaScript	(eg:	12:00-14:00	->	“Two	
hours	ago”).	

3.3.1. Data	Input/Output	

This	component	is	used	in	the	communication	between	the	front-end	and	the	back-end.	It	is	
used	not	only	for	the	authentication	process	(send	username/password)	but	also	to	receive	
and	send	data	about	new	elements	and	use	cases.	The	communication	is	done	through	the	
following	functions	which	are	calling	the	REST	API	available	on	the	back-end:	

• getData:	Used	to	retrieve	data	about	the	elements.	
o AJAX	URL:	./data/<ElementType>/<ElementId>	(For	a	single	element)	
o AJAX	Method:	GET	

• insertData:	Used	to	add	or	edit	information	about	an	element.	
o AJAX	URL:	./data/<ElementType>/<ElementId>	(When	editing)	
o AJAX	Method:	POST	
o Data:	{“action”:”insert”,”data”:<ElementData>}	

	

Front-end

Data	processing

User	interface

Data	
Input/Output

Back-end

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	24	

• deleteElement:	Used	to	delete	an	element.	
o AJAX	URL:	./data/<ElementType>/<ElementId>	
o AJAX	Method:	POST	
o Data:	{“action”:”delete”}	

	

In	some	cases,	it	is	necessary	to	process	the	data	before	sending	it	through	the	API	or	to	
process	the	data	received	through	the	API	before	showing	it	to	the	user.	This	is	ensured	by	
the	following	component.	

3.3.2. Data	processing	

This	component	is	responsible	in	processing	the	data	available	on	the	IoT	Catalogue,	in	
handling	the	data	entered	by	the	user,		in	preparing	them	to	be	sent	and	stored	on	the	back-
end	and	in	arranging	and	combining	the	data	coming	from	the	back-end	according	to	the	
request	made	by	the	user	through	the	user	interface.	The	following	functions	are	used	on	
this	component.	

• newElement:	reads	the	data	entered	by	the	user,	validate	and	combines	them	into	
an	object,	ready	to	be	sent	to	the	back-end.	

• getHardwareInfo:	gives	information	about	the	hardware	that	is	able	to	measure	
from	a	list	of	given	parameters.	

• sortObjects:	sorts	objects	from	a	vector	taking	into	account	a	given	attribute	(eg:	sort	
the	vector	vendors	by	the	attribute	‘price’).	

After	processing	the	data,	information	will	be	displayed	to	the	user		and	this	is	done	through	
a	user	interface.	

3.3.3. User	interface	

This	is	a	web	based	interface	which	provides	the	mechanisms	necessary	to	display	to	the	
user	information	about	several	components	and	also	allows	to	enter	new	information.	On	
IoT	Catalogue	the	information	is	accessed	by	the	user	through	tables	and	forms	and	this	
interface	is	provided	in	the	following	layout.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	25	

	

Figure	12	–	Web	interface	layout	

The	user	interface	is	divided	into	3	parts:		

• A	header	bar	located	on	the	top	of	the	page	which	contains	a	menu	and	information	
for	the	logged	user;		

• the	navigation	area	which	contains	an	MVP	menu	allowing	to	see	the	use	cases	
defined	in	each	one.	A	menu	will	contain	the	different	categories	for	the	hardware	
and	an	‘other’	menu	will	contain	information	about	miscellaneous	components;		

• a	content	area	which	is	where	the	information	is	shown	and	entered	by	the	user	
through	tables	and	forms.	

A	table	is	used	to	display	information	about	a	group	of	objects	and	could	be	used	for	
example	to	show	all	the	components	of	specific	type	(list	all	the	sensors).	Clicking	on	a	single	
line	of	the	table	opens	a	form	containing	extra	information	about	the	object	and	it	is	also	
possible	to	perform	a	search	using	the	search	text	box	filter	list	by	attribute	name	using	the	
dropdowns	available.	Figure	13	shows	an	example	where	information	about	several	sensors	
is	being	displayed	along	with	the	name,	the	manufacturer	and	its	price.	

Navigation	area Content	area

Header	bar

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	26	

	

Figure	13	–	Listing	of	all	the	sensors	

A	form	can	be	used	both	in	edit	and	view	mode	when	information	is	being	added/entered	or	
when	detailed	information	is	being	consulted	from	a	component.	The	following	figure	shows	
an	example	where	detailed	information	is	shown	about	a	parameter,	both	in	edit	and	view	
mode.	

	

Figure	14	–	Parameter	information	

The	following	functions	are	used	to	handle	the	forms	and	the	tables	available	in	the	IoT	
Catalogue.	

• newFormLoad:	loads	in	the	content	area	the	form	layout	taking	into	account	the	
data	that	is	being	entered	by	the	user.	

• fillElementForm:	fills	all	the	fields	of	the	loaded	form	taking	into	account	the	data	
available	for	a	specific	element.	

• fillElementsTable:	lists	in	a	table	all	the	components	of	a	specific	type,	including	
information	of	specific	of	each	type	(eg:	Name,	Manufacturer	and	Price).	

• fillVendorsTable:	list	in	a	table	all	the	vendors	for	a	specific	component,	including	
information	about	the	vendor	name,	the	price	and	the	date	of	the	last	price	update.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	27	

• fillHardwareTable:	lists	in	a	table	all	the	hardware	that	can	be	used	to	measure	a	
group	of	parameters,	including	information	about	the	sensor	name	and	about	its	
price.	

• exportDoc:	displays	on	the	content	area	all	the	use	cases	organized	by	MVP’s	listing	
all	the	actors,	parameters	and	hardware	for	each	one.	

This	front-end	also	provides	an	administration	page	for	users	with	admin	privileges.	The	next	
section	provides	instruction	on	the	usage	of	the	tool	and	the	instructions	are	illustrated	by	
several	examples.	

3.4. Manual	

The	IoT	Catalogue	provides	a	help	mode	which	is	intended	to	aid	the	user	during	its	
navigation.	This	mode	can	be	activated	in	the	top	bar	as	shown	in	the	Figure	15.		
	

	

Figure	15	–	Help	mode	

The	web	interface	for	each	page	includes	extra	instructions,	making	easier	to	consult	and	
enter	information.	Navigation	on	the	IoT	catalogue	is	made	through	menus,	tables	and	
forms.	Menus	are	used	to	select	which	type	of	information	are	listed	in	the	table.	It	is	then	
possible	to	select	a	line	from	the	table	to	consult	detailed	information	about	a	single	
element.	Figure	16	shows	how	information	about	a	single	use	case	can	be	consulted.	
	

	

Figure	16	–	Consulting	an	use	case	

In	the	next	paragraphs,	examples	are	given	for	all	the	menus	available	under	the	navigation	
area,	showing	all	the	options	and	the	types	of	information	that	are	retrieved	by	using	each	
menu.	

Menu with all MVP’s, by
selecting ‘Agriculture’ all
the use cases for this
MVP are listed.

This table lists all the use
cases for the Agriculture
MVP, detailed information
is shown by clicking in a
single line.

This form shows detailed
information for the use
case selected in the table.

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	28	

3.4.1. MVP’s	menu	

The	IoT	Catalogue	in	the	context	of	WAZIUP	organizes	the	information	from	the	use	cases	
among	different	MVP’s.	Under	the	first	menu	located	in	the	navigation	area	it	is	possible	to	
list	all	the	use	cases	for	a	specific	MVP.	The	following	example	shows	how	the	agriculture	
related	use	cases	are	being	listed.	

	

Figure	17	–	Agriculture	MVP’s	

	

Figure	18	–	Agriculture	use	case	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	29	

The	table	in	Figure	18	shows	all	the	use	cases	related	with	the	Agriculture	MVP	along	with	
information	about	description	of	each	one,	the	number	of	actors	that	are	affected	and	the	
parameters	that	are	measured	under	the	context	of	the	problem.	By	clicking	in	a	line	of	the	
table	it	is	possible	to	consult	detailed	information	about	the	use	case.	An	example	is	
provided	in	Figure	18.	

The	form	shown	in	Figure	19	details	information	about	a	use	case	of	the	Agriculture	MVP.	In	
the	MVP	menu	it	is	also	possible	to	list	all	the	actors,	the	hardware	used	or	to	generate	a	
report	containing	detailed	information	of	each	use	case.	Figure	19	shows	a	list	of	all	the	
actors	available	on	the	tool.	

	

	

Figure	19	–	List	of	all	actors	

All	the	actors	used	on	the	use	cases	are	being	listed	along	with	its	name.	Clicking	on	a	table	
line	allows	through	a	form	to	consult	or	edit	its	name.	The	information	of	the	actors	used	is	
displayed	when	consulting	information	about	a	use	case	or	a	MVP.		As	shown	in	Figure	20	it	
is	possible	to	see	a	report	for	Cattle	Rustling	MVP	being	generated	including	the	information	
of	its	actors.	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	30	

	

Figure	20	–	Cattle	Rustling	report	

In	this	report	it	is	possible	to	see	for	each	use	case	detailed	information	along	with	its	actors,	
the	parameters	and	the	hardware	solutions.	There	are	buttons	(located	on	the	top)	used	to	
hide/unhide	information	per	category	and	a	button	(located	on	the	top	right)	used	to	print	
the	information	displayed.	It	is	also	possible	to	list	the	hardware	solutions	per	MVP.	
	

	

Figure	21	–	Hardware	solutions	for	Cattle	rustling	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	31	

The	table	includes	all	the	sensors	used	on	Cattle	Rustling	MVP	along	with	information	about	
its	name	and	price.	

3.4.2. Hardware	menu	

The	Hardware	menu	lists	the	hardware	stored	on	the	IoT	Catalogue	to	choose	among	Board,	
Interface,	Radio	and	Sensor	to	list	the	components	of	a	specific	type.	The	information	is	
displayed	in	a	table	and	it	includes	the	name	of	the	component,	the	manufacturer	and	the	
cost	considering	the	vendor	with	the	lowest	price.	In	Figure	22	we	can	see	a	example	where	
information	about	the	all	the	boards	is	being	listed.	
	

	

Figure	22	–	List	of	all	boards	

All	the	boards	are	being	listed	along	with	basic	information.	By	clicking	in	a	table	line	it	is	
possible	to	see/edit	detailed	information	about	the	component.	Figure	23	shows	an	example	
where	detailed	information	about	the	“Arduino	Nano”	is	being	shown.	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	32	

	

Figure	23	–	Arduino	Nano	

On	this	screen	it	is	possible	to	see	and	edit	all	the	attributes	for	the	sensor	“Analog	pH	Meter	
Kit	-	Probe".	It	is	also	possible	to	remove	the	document	from	the	database	by	using	the	
“Delete”	button	located	at	the	bottom	of	the	form.	

3.4.3. Other	menu	

The	last	menu	of	the	navigation	gives	access	to	miscellaneous	components	such	as	radio	
communication	protocols,	domains,	parameters	and	units.	In	the	following	example	it	is	
possible	to	see	the	listing	of	all	radio	communication	protocols.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	33	

	

Figure	24	–	Radio	communication	protocols	

For	each	communication	protocol	it	is	possible	to	see	information	regarding	its	name,	the	
protocol	standard,	the	frequency	and	the	mode	of	operation.	By	selecting	a	single	element	it	
is	possible	to	see	detailed	information	about	the	protocol	and	also	the	hardware	that	is	
associated	with	the	protocol.	Figure	25	shows	an	example	for	the	“Bluetooth	v4.2”.	
	

	

Figure	25	–	Bluetooth	v4.2	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	34	

3.4.4. New	element	

In	the	IoT	Catalogue,	adding	new	information	about	a	component	is	done	through	a	form.	
For	each	type	of	component	taking	into	account	its	attributes	a	different	template	is	used	to	
generate	the	form	that	will	allow	the	user	to	input	information	about	the	component.	Figure	
26	shows	an	example	for	a	case	where	a	new	unit	is	being	added	to	the	IoT	Catalogue.	There	
are	templates	for	the	following	component	types:	

• Actor	
• Board	
• Communication	
• Domain	
• Interface	
• MVP	
• Parameter	
• Radio	
• Sensor	
• Unit	
• Use	case	

	

	

Figure	26	–	New	unit	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	35	

On	this	example	the	loaded	form	was	based	on	the	“Unit”	template	where	each	field	of	the	
form	is	related	to	an	attribute	of	the	produced	JSON	object	for	this	component	and	where	
some	of	the	fields	are	mandatory.	The	following	page	shows	a	summary	of	all	option	that	are	
available	through	the	navigation	area.		

The	navigation	area	in	the	IoT	Catalogue	contains	several	options	and	each	one	has	its	own	
type	of	interaction	with	the	user	to	consult	or	edit	information	about	the	elements	stored	on	
the	tool.	The	following	figure	gives	an	overview	of	the	navigation	area	where	it	is	possible	to	
see	all	the	options	available,	how	they	are	related	each	other	and	how	they	interact	with	the	
user	(by	forms,	table,	menus,	etc.).		

	

Figure	27	–	Navigation	overview	

	

	

	

� IoT Catalogue
MVP
�MVP Dropdown
�Export data
�List hardware solutions
�List actors

�MVP Selector
�MVP Selector dropdown
�Export data
�List hardware solutions

�Use case details
Hardware
�Board
�Board details

� Interface
� Interface details

�Radio
�Radio details

�Sensor
�Sensor details

Other
�Communication
�Communication details

�Domain
�Domain details

�Parameter
�Parameter details

�Unit
�Unit details

�New element

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	36	

4. IOT	CONNECTIVITY	
4.1. Introduction	

IoT	devices	naturally	use	wireless	technologies	to	communicate.	IoT	communications	are	
categorized	as	Machine-to-Machine	communications	to	differentiate	them	from	traditional	
human-oriented	communications.	

Many	IoT	applications	are	generally	remote	sensing	systems	where	measures	(e.g.	
temperature,	acceleration,	contact	time,...)	from	the	physical	world,	or	from	entities	in	the	
physical	world,	are	collected	for	monitoring	and	possibly	analysis	&	instrumentation	tasks.	
The	application	model	of	IoT	is	very	large	and	WAZIUP	will	not	address	all	of	them.	In	the	
WAZIUP	project,	the	remote	sensing	scenarios	are	will	be	the	main	scenarios	for	deployed	

applications	and	Figure	28	shows	a	typical	IoT	remote	sensing	using	either	simple	1-hop	
connectivity	(red	links)	or	multi-hop	connectivity	(black	dotted	links)	from	end-device	to	a	
gateway.	

	

Figure	28	–	Remote	sensing	scenario	with	1-hop	connectivity	to	the	gateway	

1-hop	connectivity	has	clear	advantages	over	the	multi-hop	case	because	of	its	simplicity	
when	deploying	the	devices	on	a	large-scale.	Multi-hop	communications	typically	need	more	
complex	mechanisms	to	be	implemented	such	as	routing	protocols,	synchronization	issues	
when	duty-cycling	is	applied,	funneling	effects	for	devices	close	to	the	gateway,...	Over	the	
last	decade,	the	main	radio	technology	for	multi-hop	IoT	is	IEEE	802.15.4	which	serves	for	
instance	as	the	physical	layer	of	ZigBee,	WirelessHart	&	ISA100	networks	and	products	to	
name	a	few.	

However,	1-hop	connectivity	in	long-range	scenarios	is	very	energy	consuming	with	
traditional	cellular	radio	technologies	such	as	GSM	or	GPRS	as	shown	in	Figure	29.	Therefore	
it	is	difficult	to	deploy	battery-operated	devices	under	these	technologies	that	have	a	long	
lifetime.	In	addition	to	the	energy	cost,	cellular	technologies	rely	on	mobile	cellular	
operators	where	the	cost	of	the	network/service	subscription	fees	is	far	from	being	
negligible.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	37	

	

Figure	29	–	Energy	consumption	for	traditional	cellular	technologies	

An	important	feature	for	an	IoT	1-hop	radio	technology	candidate	is	therefore	low	power	
consumption.	The	other	feature	is	of	course	the	long-range	transmission	capability.	
Regarding	transmission	(and	reception)	range,	Figure	30	shows	in	a	very	simplified	view	the	
transmission/reception	chain	of	a	wireless	transmission	where	the	notion	of	"receiver's	
sensitivity"	for	correct	packet	reception	is	illustrated.	

	

Figure	30	–	Simplified	view	of	the	link	budget	of	a	wireless	transmission	

The	receiver's	sensitivity	is	usually	defined	as	the	lowest	input	power	with	acceptable	link	
quality,	typically	1%	PER	(Packet	Error	Rate).	Generally,	the	receiver's	sensitivity,	at	a	given	
transmission	power,	can	be	greatly	improved	by	reducing	the	throughput.	

Recently,	2	radio	technologies	have	initiated	an	incredible	movement	towards	low-power	
long-range	wide	area	networks	(LPWAN):	SigFoxTM	and	LoRaTM	where	the	range	in	1-hop	can	
be	more	than	15kms	in	Line-of-Sight	(LOS)	conditions.	These	LPWAN	technologies	are	
definitely	more	suitable	for	battery-operated	IoT	devices	than	traditional	cellular	
technologies	as	their	power	consumption	can	be	compared	to	previous	short-range	radio	
technologies	(such	as	IEEE	802.15.4)	but,	with	the	increase	in	reception	range,	can	avoid	the	
complexity	of	multi-hop	networks.	They	both	follow	the	"talk	slower":	throughput	is	in	the	
order	of	several	kbps	which	is	by	far	much	smaller	than	traditional	wireless	technologies.	
Following	these	precursor	technologies,	many	other	technologies	or	adaptation	of	existing	
technologies	are	also	trying	to	address	the	low-power,	long-range		and	lower	throughput	IoT	
market.	The	next	section	will	provide	a	brief	review	of	these	LPWAN	technologies.	

 200-500mA 500-1000mA 100-300mA

From Peter R. Egli, INDIGOO.COM

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	38	

4.2. Brief	review	of	long-range	technologies	

Figure	31	shows	the	main	IEEE	802	wireless	technologies	and	their	corresponding	target	data	
rate	and	range.	The	region	addressed	by	the	recent	LPWAN	technologies	is	typically	the	one	
providing	very	low	data	rate	but	longer	range.	This	region	has	not	been	significantly	
addressed	in	the	past.	SigFox	and	LoRa	are	the	first	true	long-range	technologies	with	a	high	
performance/price	tradeoff,	making	them	very	promising	for	large-scale	deployment	of	IoT.	

	

Figure	31	–	IEEE	802	wireless	technologies	and	LPWAN	

There	are	other	technologies	that	claim	to	address	the	LPWAN	segment.	It	is	beyond	the	
purpose	of	this	document	to	describe	them	is	detail	but	we	can	mention	some	of	them:	

• Weightless-N,	Weightless-P	
• LTE-CatM1	
• RPMA	
• IEEE	802.11ah	
• NWave	
• Telensa	
• NB-IoT	
• Amber-Wireless	
• WaveIoT	

Many	of	them	are	not	available	yet	on	a	mass-market	perspective.	SigFox	and	LoRa	are	still	
the	2	major	LPWAN	technologies	that	received	important	support	from	a	large	number	of	
industrials	and	operators.	Readers	willing	to	know	more	about	these	technologies	can	first	
refer	to	the	LinkLab		white	paper	[1]	and	then	to	the	EDN.com	article	[2].	

SigFox	is	very	different	from	LoRa	in	the	sense	that	SigFox	position	itself	mainly	as	an	
operator	wheras	LoRa	is	only	the	physical	modulation	techniques	that	is	patented	by	
Semtech.	Third	parties	can	use	(buy)	Semtech	LoRa	chips	to	deploy	their	own	LPWAN	
networks.	Some	third	parties	may	be	themselves	operators	with	a	traditional	business	model	
but	some	others	can	be	simply	end-users	deploying	their	own	ad-hoc	LPWAN	networks.	This	
is	why	WAZIUP	project	uses	only	LoRa	technology	to	build	low-cost	IoT	infrastructures	and	

platforms.	

Energy

Energy-Range dilemma

L
P
W
A
N
?

2G/3G/4G

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	39	

4.3. LoRa	long-range	technology	

LoRa	is	a	long-range	radio	technology	developed	by	Semtech.	Here	is	a	definition	from	
Semtech's	LoRa	FAQ:	

"LoRaTM	(Long	Range)	is	a	modulation	technique	that	provides	significantly	longer	range	than	
competing	technologies.	The	modulation	is	based	on	spread-spectrum	techniques	and	a	
variation	of	chirp	spread	spectrum	(CSS)	with	integrated	forward	error	correction	(FEC).	LoRa	
significantly	improves	the	receiver	sensitivity	and	as	with	other	spread spectrum	
modulation	techniques,	uses	the	entire	channel	bandwidth	to	broadcast	a	signal,	making	it	
robust	to	channel	noise	and	insensitive	to	frequency	offsets	caused	from	the	use	of	low	cost	
crystals.	LoRa	can	demodulate	signals	19.5dB	below	the	noise	floor	while	most	frequency	
shift	keying	systems	(FSK)	need	a	signal	power	of	8-10dB	above	the	noise	floor	to	demodulate	
properly.	The	LoRa	modulation	is	the	physical	layer	(PHY),	which	can	be	utilized	with	different	
protocols	and	in	different	network	architecture	–	Mesh,	Star,	point	to	point,	etcetera."	
[http://www.semtech.com/wireless-rf/lora/LoRa-FAQs.pdf]	

In	LoRa,	throughput	and	range	depend	on	3	main	LoRa	parameters:	BW,	CR	and	SF.	BW	is	
the	physical	bandwidth	for	RF	modulation	and	can	take	values	of	500kHz,	250	kHz,	125kHz	
and	62.5kHz.	Larger	signal	bandwidth	allows	for	higher	effective	data	rate,	thus	reducing	
transmission	time	at	the	expense	of	reduced	sensitivity.	CR	is	the	coding	rate	for	forward	
error	detection	and	correction.	Such	coding	incurs	a	transmission	overhead	and	the	lower	
the	coding	rate,	the	higher	the	coding	rate	overhead	ratio,	e.g.	with	coding_rate=4/(4+CR)	
the	overhead	ratio	is	1.25	for	CR=1	which	is	the	minimum	value.	Finally,	SF	is	the	spreading	
factor	that	can	be	set	from	6	to	12.	The	lower	the	SF,	the	higher	the	data	rate	transmission	
but	the	lower	the	immunity	to	interference	thus	the	smaller	is	the	range.	

Figure	32	from	Semtech	shows	for	various	bandwidth	and	spreading	factor	values	the	
expected	throughput	and	receiver	sensitivity.	

	

Figure	32	–	LoRa	throughput	and	sensitivity	for	various	BW	and	SF	values	

4.3.1. Physical	layer	

At	the	physical	layer,	LoRa	modulation	is	a	variation	of	Chirp	Spread	Spectrum	(CSS)	that	was	
long	before	been	developed	in	radar	technologies.	We	will	not	describe	in	detail	the	LoRa	
modulation	as	it	is	also	beyond	the	scope	of	this	document	but	the	readers	can	refer	to	the	
Semtech	document	[3],	the	RevSpace	article	[4]	and	the	Reversing	LoRa	article	[5]	that	
explains	in	a	comprehensive	manner	the	LoRa	underlying	modulation	approach.	However,	
for	a	fast	glance	on	LoRa	modulation,	we	include	below	a	text	taken	from	[3].	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	40	

From	Semtech's	AN1200.22	

"LoRa	is	a	proprietary	spread	spectrum	modulation	scheme	that	is	derivative	of	Chirp	Spread	
Spectrum	modulation	(CSS)	and	which	trades	data	rate	for	sensitivity	within	a	fixed	channel	
bandwidth.	It	implements	a	variable	data	rate,	utilizing	orthogonal	spreading	factors,	which	
allows	the	system	designer	to	trade	data	rate	for	range	or	power,	so	as	to	optimize	network	
performance	in	a	constant	bandwidth."	

"In	LoRa	modulation	the	spreading	of	the	spectrum	is	achieved	by	generating	a	chirp	signal	
that	continuously	varies	in	frequency.	An	advantage	of	this	method	is	that	timing	and	
frequency	offsets	between	transmitter	and	receiver	are	equivalent,	greatly	reducing	the	
complexity	of	the	receiver	design.	The	frequency	bandwidth	of	this	chirp	is	equivalent	to	the	
spectral	bandwidth	of	the	signal."	

We	also	include	here	an	illustration	of	a	LoRa	transmission	taken	from	[4].	

	

Figure	33	–	spectrogram	example	of	a	LoRa	transmission	

"The	image	[...]	shows	the	LoRa	spectrogram	for	a	short	message	as	recorded	by	gqrx,	when	
sending	a	1-byte	payload	(with	settings	SF=12,BW=8,CR=4/8,	implicit	header).	At	the	bottom	
of	the	spectrogram	you	can	see	the	preamble	consisting	of	10	up-chirps	and	2	down-chirps.	
At	the	top	of	the	spectrogram	you	see	the	data	portion	of	the	signal,	consisting	solely	of	up-
chirps."	

4.3.2. LoRaWAN	

As	LoRa	defines	only	the	physical	layer,	the	modulation,	the	LoRaWAN	specification	[6]	[7]	
additionally	defines	common	data	and	control	channels	(frequency	and	spreading	factors),	
packet	format,	MAC	commands,...	for	large-scale	deployment	with	network	servers	and	
application	servers.	LoRaWAN	also	defines	several	classes	for	the	end-device	depending	on	
the	communication	needs.	Each	class	has	its	own	requirements	also	defined	by	LoRaWAN	
specifications.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	41	

From	Semtech's	LoRa	FAQ:	

“The	LoRa	modulation	is	the	PHY,	and	LoRaWAN	is	a	MAC	protocol	for	a	high	capacity	long	
range	and	low	power	star	network	that	the	LoRa	Alliance	is	standardizing	for	Low	Power	
Wide	Area	Networks	(LPWAN).	The	LoRaWAN	protocol	is	optimized	for	low	cost,	battery	
operated	sensors	and	includes	different	classes	of	nodes	to	optimize	the	tradeoff	between	
network	latency	and	battery	lifetime.	It	is	fully	bi-directional	and	was	architected	by	security	
experts	to	ensure	reliability	and	safety.	The	architecture	of	LoRaWAN	was	also	designed	to	
easily	locate	mobile	objects	for	asset	tracking,	which	is	one	of	the	fastest	growing	volume	
applications	for	Internet	of	Things	(IoT).	LoRaWAN	is	being	deployed	for	nationwide	networks	
by	major	telecom	operators,	and	the	LoRa	Alliance	is	standardizing	LoRaWAN	to	make	sure	
the	different	nationwide	networks	are	interoperable.”	

A	typical	LoRaWAN	network	is	depicted	in	Figure	34.	Network	servers	will	handle	all	
communications	between	end-devices	and	gateways	and	therefore	implement	most	of	the	
LoRaWAN	functionalities	by	interacting	at	a	lower	level	with	the	gateways.	Application	
servers	can	serve	to	store	the	end-user	application	data.	

	

Figure	34	–	LoraWAN	typical	topology	

4.3.3. LoRa	radio	modules	

The	LoRa	modulation	is	implemented	in	so-called	LoRa	transceiver	chips	provided	by	
Semtech.	They	belong	to	the	SX127x	family	and	LoRa	modulation	is	implemented	in	
SX1272/73/76/77/78	chips	as	documented	in	[8].	

Various	manufacturers	then	use	the	Semtech	chips	to	propose	LoRa	radio	modules	that	can	
further	be	integrated/connected	into	microcontroller	boards.	Note	that	although	an	SX1276	
chip	can	for	example	support	several	frequency	bands,	i.e.	433MHz,	868MHz	and	915MHz,	
the	design	of	a	radio	module	to	suit	a	given	frequency	band	can	be	different	as	documented	
in	the	Semtech	Reference	Design	Overview	document	[9].	This	is	mainly	due	to	how	the	
different	amplifier	components/lines	of	the	LoRa	chips	are	used/wired	to	power	the	radio	
transmission.		

Figure	35	shows	some	radio	modules	that	we	fully	tested	in	the	WAZIUP	project,	as	it	will	be	
explained	later	on	in	section	5.3.2.		

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	42	

	

Figure	35	–	some	radio	module	built	from	SX127x	Semtech	chips	

LoRa	radio	modules	can	either	expose	the	raw	LoRa	transceiver	features	or	add	a	LoRaWAN	
protocol	stack	on	top	of	the	Semtech	chip.	The	6	modules	shown	above	only	expose	the	raw	
LoRa	transceiver	functionalities.		

4.4. Transmission	in	the	unlicensed	frequency	band	

Wireless	communications	are	usually	highly	regulated	in	most	countries	and	it	is	not	allowed	
to	transmit	freely	in	a	frequency	band	except	or	some	so-called	unlicensed	bands.	The	ISM	
(Industry,	Scientific	and	Medical)	band	is	one	of	the	most	well-known	unlicensed	band.	For	
instance,	the	2.4GHz	ISM	band	is	an	internationally	agreed	unlicensed	band	so	that	WiFi	
operating	in	this	band	can	be	deployed	free	of	license	authorization	and	charges.	It	is	the	
same	reason	that	allows	most	people	on	Earth	to	be	able	to	have	microwave	ovens	as	they	
use	2.4GHz	microwaves.	Figure	36	shows	a	brief	overview	of	the	unlicensed	frequency	bands	
per	region.	

	

Figure	36	–	ISM	band	per	region	

Many	recent	long-range	radio	technologies	(thus	including	LoRa)	do	operate	in	the	
unlicensed	frequency	bands	that	usually	change	from	one	country	to	another.	The	choice	of	
unlicensed	band	is	not	really	a	technical	constraint	because	these	long-range	technologies	
can	also	operate	in	other	frequency	bands	that	are	licensed	(for	instance	those	uses	by	
mobile	telephony	operators).	The	choice	of	unlicensed	band	is	rather	motivated	by	the	ease	
of	deployment	of	these	initial	long-range	devices	in	order	to	boost	the	market.	It	is	foreseen	

Libelium LoRa
HopeRF
RFM92W/95W

Modtronix
inAir9/9B

NiceRF
LoRa1276

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	43	

that	many	operators	will	finally	reuse	GSM/2G	frequency	bands	for	deploying	LPWAN	
technologies	in	licensed	bands.	

In	most	of	European	countries,	the	unlicensed	bands	for	LoRa	usage	is	433MHz	and	868MHz.	
These	countries	usually	adhere	to	the	ETSI	regulations	for	Short	Range	Device	(SRD)	in	sub-
GHz	bands	defined	in	the	ETSI	EN	300-220-1	document	[10].	The	868MHz	band	is	usually	
preferred	for	IoT	as	the	433MHz	band	is	quite	saturated	by	existing	radio	devices	such	as	
audio,	alarms	and	other	remote	control	devices.		Additionally,	as	these	bands	are	“free”,	
some	constraints	are	to	be	put	to	avoid	excessive	usage	and	saturation	of	the	frequency	
bands.	The	main	regulation	mechanisms	are	transmission	power	limitation	and	transmission	
time	limitation.	The	latter	is	usually	refer	to	as	“duty-cycle”	limitation	expressed	for	instance	
as	1%	per	hour.	In	this	case,	the	total	transmission	time	of	an	SRD	device	under	1%	duty-
cycle	is	36s	per	hour	period.	More	details	on	SRD	regulations	can	be	read	in	[10].	For	
transmission	power	limitation,	typical	limitation	is	14dBm	(25mW)	in	Europe	in	the	868MHz	
band	as	illustrated	in	Figure	37	below	taken	from	ETSI	EN	300-220-1	document	[10].	

Figure	37	–	868MHz	unlicensed	band	restrictions	

Note	that	1%	duty	cycle	can	be	used	provided	that	the	band	is	restricted	to	865-868MHz	as	
indicated	mainly	by	note	9	below,	also	taken	from	ETSI	EN	300-220-1	document	[10].	

	

Figure	38	–	additional	notes	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	44	

	

In	Sub-Saharan	Africa	countries,	the	unlicensed	bands	usually	differ	from	one	country	to	
another,	with	also	various	constraints	from	one	country	to	another.		

In	the	WAZIUP	project,	the	radio	transmission	will	have	to	adapted	to	the	local	

regulations.	Therefore,	range	or	performance	of	the	long-range	platform	may	vary	from	

one	country	to	another.	

For	Senegal,	we	will	use	the	863-865MHz	band	with	transmission	power	limited	to	10dBm	

(10mW)	[11].	We	are	in	the	process	of	adapting	to	other	African	partner’s	country	as	well.	

	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	45	

5. WAZIUP	LOW-COST	IOT	PLATFORM	

5.1. IoT	platform's	objectives	

The	WAZIUP	low-cost	IoT	platform	will	provide	an	open-source,	simple	long-range	
communication	library,	generic	building	blocks	and	tools	for	building	efficient	low-cost	IoT	
devices	and	gateways	from	“off-the-shelves”	consumer-market	components.	The	long-range	
communication	library	targets	LoRa	radio	modules	as	LoRa	radio	technologies	is	chosen	for	
the	IoT	communication	part.	

For	the	low-cost	end-devices,	we	show	the	usage	of	the	long-range	communication	library	
and	how	low-power/duty-cycled	applications	can	be	programmed.	

For	the	low-cost	gateway,	WAZIUP	provides	a	low-level	radio	bridge	program	to	receive	LoRa	
packets	from	end-devices	and	higher-level	programs/tools/scripts	to	further	process	the	
received	data.	A	typical	simple	task	would	be	for	instance	to	push	received	data	from	
deployed	sensors	to	public	IoT	cloud	platforms.	

Training	materials	such	as	step-by-step	tutorial	slides	and	short	tutorial	video	sequences	
explain	how	to	build	the	entire	low-cost	WAZIUP	LoRa	IoT	ecosystem.	

Regarding	LoRaWAN	adoption,	rather	than	providing	large-scale	deployment	support,	
WAZIUP	targets	small	size	deployment	scenarios.	In	those	kind	of	applications,	there	will	be	
most	likely	a	single	application	owner,	e.g.	a	fish	farming	manager	willing	to	get	in	real-time	
various	water	quality	indicators	in	the	fish	ponds.	

5.1.1. Deployment	scenarios	

Our	LoRa	framework	focuses	on	easy	integration	of	low-cost	"off-the-shelves"	components	
with	simple,	open	programming	libraries	and	templates	for	easy	appropriation	and	
customization	by	third-parties	applications,	communities	and	ICT	companies.	

In	addition,	WAZIUP	also	takes	into	account	the	fact	that	Internet	connectivity	can	be	quite	
unstable	or	simply	impossible	to	get	in	some	remote	areas.	Figure	39	depicts	the	2	scenarios	
(with	Internet	access	and	without	Internet	access)	that	WAZIUP	can	handle.		

	

Figure	39	–	Traditional	Internet	access	scenario	(top),	without	Internet	access	(bottom)	

Internet
access

B

A

10-15kms

No subscription
Deploy own network
Low energy consumption

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	46	

Our	framework	can	be	deployed	in	a	fully	autonomous	way	without	the	need	of	Internet	
access	nor	Internet	servers	(especially	avoiding	network	and	application	servers	as	defined	
by	LoRaWAN)	to	get	the	sensed	data.	Therefore,	our	framework	proposes	local	interaction	
methods	with	the	end-user	using	smartphones/tablet/laptop	with	well-known	technologies	
such	as	WiFi	or	Bluetooth.		

5.1.2. Why	are	we	not	LoRaWAN	compliant?		

From	the	orientation	and	design	choice	perspective,	we	already	explained	our	choice	above:	
while	LoRaWAN	is	targeted	at	large	scale	deployments,	WAZIUP	targets	small-scale	
deployments.	Furthermore,	we	want	to	provide	a	level	of	performance	and	customization	
that	is	not	available	with	LoRaWAN.		

With	the	gateway-centric	mode	of	LoRa	LPWAN	technology,	commercial	LoRaWAN	gateways	
for	large-scale	deployment	scenarios	are	able	to	listen	on	several	channels	and	LoRa	settings	
simultaneously.	They	typically	use	advanced	radio	concentrators	chips	capable	of	scanning	
up	to	8	different	channels:	the	SX1301	concentrator	is	used	instead	of	the	SX127x	chip	series	
that	are	designed	for	end-devices.		

Our	gateway	uses	a	different	approach	in	the	context	of	agriculture/micro	and	small	
farm/village	environments:	simpler	"single	connection/channel"	(one	combination	of	BW,	
CR,	SF	and	one	frequency	at	a	time)	gateways	can	be	built	around	an	SX1272/76	radio	
module,	much	like	an	end-device	would	be.	This	design	choice	greatly	decreases	the	cost	
and	complexity	of	the	gateway.	At	the	same	time,	advanced	mechanisms	to	limit	
interferences	can	be	implemented	to	compensate	for	the	"single	connection/channel"	
limitation.	

Our	framework	also	does	not	follow	the	LoRaWAN	standard	because	it	wants	to	propose	the	
possibility	to	add	advanced	and	ad-hoc	mechanisms	such	as:	

• P2P	(device-to-device)	communications	to	allow	for	direct	device	cooperation	
schemes;	

• LoRa	repeaters	functionality	in	end-devices	to	handle	practical	deployment	issues	
when	some	sensing	devices	are	in	very	remote	areas,	placed	very	close	to	the	ground	
or	obstacles;	

• Advanced	(and	ad-hoc)	channel	access	methods	to	increase	transmission	reliability;	

• Advanced	Quality	of	Service	mechanism	to	handle	the	duty-cycle	limit	of	sub-GHz	
transmission,	providing	some	means	of	guaranteeing	transmission	latency;	

More	information	are	detailed	in	our	FAQ:	
	
[Doc]	Low-cost	LoRa	IoT	devices	and	gateway	FAQ	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/FAQ.pdf		

5.2. Low-cost	gateways	

With	the	simpler	"single-connection"	gateway	approach,	a	low-cost	gateway	can	be	built	
based	on	a	simpler	radio	module,	much	like	an	end-device	would	be.	Then,	by	using	an	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	47	

embedded	Linux	platforms	such	as	the	Raspberry	PI	with	high	price/quality/reliability	
tradeoff,	the	cost	of	such	gateway	can	be	less	than	45	euro.		

Therefore,	rather	than	providing	large-scale	deployment	support,	IoT	platforms	in	
developing	countries	need	to	focus	on	easy	integration	of	low-cost	"off-the-shelves"	
components	with	simple,	open	programming	libraries	and	templates	for	easy	appropriation	
and	customization	by	third-parties.	By	taking	an	adhoc	approach,	complex	and	smarter	
mechanisms,	such	as	advanced	radio	channel	access	to	overcome	the	limitations	of	a	low-
cost	gateway,	can	even	be	integrated	as	long	as	they	remain	transparent	to	the	final	
developers.	The	low-cost	gateway	architecture	will	be	described	in	Section	5.5.	

5.3. Long-range	communication	library	

The	long-range	communication	library	is	based	on	an	open-source	library	developed	by	the	
Libelium	company	for	their	Libelium	SX1272	radio	module.	We	enhanced	it	with	various	
mechanisms	for	WAZIUP	as	explained	in	the	next	paragraphs.	Note	that	the	developed	
library	works	for	end-devices	and	gateways,	therefore	simplifying	maintenance,	updates	and	
future	common	developments.	

5.3.1. Improvements	to	the	Libelium	SX1272	library	

The	following	improvements	have	been	performed	on	the	initial	SX1272	library:	

 * Now, 26th, 2016
 * - add preliminary support for ToA limitation
 * - when in "production" mode, uncomment #define LIMIT_TOA
 * Now, 16th, 2016
 * - provide better power management mechanisms
 * - manage PA_BOOST and dBm setting
 * Jan, 23rd, 2016
 * - the packet format at transmission does not use the original Libelium format anymore
 * - the format is now dst(1B) ptype(1B) src(1B) seq(1B) payload(xB)
 * - ptype is decomposed in 2 parts type(4bits) flags(4bits)
 * - type can take current value of DATA=0001 and ACK=0010
 * - the flags are from left to right: ack_requested|encrypted|with_appkey|is_binary
 * - ptype can be set with setPacketType(), see constant defined in SX1272.h
 * - the header length is then 4 instead of 5
 * Jan, 16th, 2016
 * - add support for SX1276, automatic detect
 * - add LF/HF calibaration copied from LoRaMAC-Node.
 * - change various radio settings
 * Dec, 10th, 2015
 * - add SyncWord for test with simple LoRaWAN
 * - add mode 11 that have BW=125, CR=4/5, SF=7 on channel 868.1MHz
 * Nov, 13th, 2015
 * - add CarrierSense() to perform some Listen Before Talk procedure
 * - add dynamic ACK suport
 * Jun, 2015
 * - Add time on air computation and CAD features

Notable	improvements	are:		

1. The	support	of	both	Arduino-based	end-devices	as	well	as	Raspberry-based	gateway	
to	reduce	maintenance	complexity	and	third-party	appropriation	and	training,	

2. The	support	of	both	SX1272,	1276	and	1278	transceivers	which	makes	the	library	
able	to	drive	most	available	SPI-based	radio	modules	on	the	market,		

3. a	more	flexible	power	management	with	selection	of	PA_BOOST	or	RFO	amplifier	
lines	to	drive	most	available	SPI-based	radio	modules	on	the	market,	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	48	

4. a	carrier	sense	mechanism	with	customizable	back-off	procedure,	

5. a	Time	on	Air	limitation	for	duty-cycle	regulation	enforcement,	

6. additional	frequency	bands	for	Africa	countries,	

7. a	simplification	of	developper's	API	

5.3.2. LoRa	modules	that	have	been	tested	

There	are	many	SX1272/76/78-based	radio	modules	available	and	we	currently	tested	with	
7:	the	Libelium	SX1272	LoRa,	the	HopeRF	RFM92W(SX1272)	&	RFM95W(SX1276),	the	
Modtronix	inAir9(SX1276)	&	inAir9B(SX1276)	&	inAir4(SX1278	or	SX1276)	and	the	NiceRF	
SX1276.	Actually	most	native	SPI-based	LoRa	modules	are	supported	without	modifications	
as	reported	by	many	users.	In	most	cases,	only	a	minimum	soldering	work	is	necessary	to	
connect	the	required	SPI	pins	of	the	radio	(MISO,	MOSI,	CS,	CLK)	to	the	corresponding	pins	
on	the	microcontroller	board.	

5.3.3. Radio	regulations	such	as	frequency	bands	and	duty-cycle	

In	Europe,	electromagnetic	transmissions	in	the	868MHz	ISM	Band	used	by	Semtech's	LoRa	
technology	falls	into	the	Short	Range	Devices	(SRD)	category.	The	ETSI	EN300-220-1	and	
ERC/REC	70-03	documents	specify	various	requirements	for	SRD	devices,	especially	those	on	
unlicensed	frequency	bands	and	radio	activity	limitation.		

Regarding	frequency	bands,	the	library	has	6	predefined	channels	(from	4	to	9)	in	the	863-
865MHz	band,	8	pre-defined	channels	(from	10	to	17)	in	the	865-868MHz	band	and	13	pre-
defined	channels	(from	0	to	12)	in	the	903-915MHz	band.	

Regarding	regulation	under	duty-cycle	limitation,	generally	transmitters	are	constrained	to	a	
maximum	of	0.1%,	1%	or	10%	every	hour	depending	on	the	transmission	power	and	the	
frequency	band.	For	instance	a	1%	duty-cycle	means	36s	of	radio	activity	time	per	period	of	
1	hour.	This	duty	cycle	limit	applies	to	the	total	transmission	time,	even	if	the	transmitter	
can	change	to	another	channel.	The	rationale	for	such	constraints	is	to	avoid	saturating	the	
radio	channel	as	this	is	an	unlicensed	band	(free	for	everybody	to	use	as	opposed	to	most	of	
frequency	bands	used	in	commercial	mobile	phone	networks).	

5.3.4. LoRa	modes	

As	indicated	previously,	the	3	main	LoRa	parameters	are	BW,	CR	and	SF.	BW	and	SF	being	
the	2	most	important.	However	you	do	not	need	to	act	on	these	parameters	directly.	The	
communication	library	defines	10	so-called	LoRa	modes	(from	1	to	10)	that	are	various	
combinations	of	BW	and	SF.	For	instance	LoRa	mode	1	defines	BW=125kHz,	CR=4/5	and	
SF=12.	This	combination	provides	the	highest	sensitivity	at	the	receiver	therefore	it	is	
suitable	to	achieve	the	longest	range.	However,	the	transmission	time	is	the	highest.	
Practically	a	real	deployment	can	use	this	mode	for	all	deployed	devices	to	be	sure	to	get	the	
larger	coverage.	For	the	other	modes,	the	range	is	generally	decreased	but	transmission	
time	is	reduced.	Figure	40	shows	the	various	LoRa	mode	as	combination	of	BW	and	SF.	
	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	49	

	

Figure	40	–	LoRa	mode	as	combination	of	BW	and	SF	

5.3.5. Minimum	function	set	to	build	a	long-range	end-device	

Here	is	an	example	of	a	minimal	setting	for	an	end-device	to	actually	send	packets	to	a	
gateway.	

sx1272.setMode(1);
sx1272.setChannel(CH_10_868);
sx1272.setPower('M'); // or sx1272.setPowerDBM(14);
sx1272.setNodeAddress(6);
sx1272.setPacketType(PKT_TYPE_DATA);
sx1272.sendPacketTimeout(1,"TC/18.56",8);

5.3.6. Packet	format	

The	LoRa	PHY	layer	packet	format	is	unchanged	and	managed	by	the	radio	module.	Then,	
there	is	a	4-byte	header	before	the	real	user	data.	The	header	is	organized	as	follows:	

[DST(1B),	PTYPE(4bits),	FLAGS(4bits),	SRC(1B),	SN(1B)]	[DATA(nB)]	

DST	is	the	destination	address.	With	the	gateway-centric	topology,	the	gateway	usually	has	
address	1	so	DST	will	most	likely	be	1.	SRC	is	the	source	address	on	1-byte	[2..255].	SN	is	the	
packet	sequence	number.	PTYPE	has	currently	2	values:	0001	for	DATA	packet	and	0010	for	
an	ACK	packet.	FLAGS	is	a	4-bit	array	that	defines	the	following	options:	

•	 1000:	ack	requested	

•	 0100:	data	is	encrypted	

•	 0010:	data	has	application	key	

•	 0001:	reserved	

This	4-byte	header	is	managed	by	our	communication	library	and	only	the	n	bytes	of	[DATA]	
will	be	provided	to	the	programmer.	If	the	programmer	wants	to	implement	application	key	
to	perform	further	filtering,	he	can	set	the	application	key	flag	and	insert	in	[DATA]	a	
sequence	of	bytes	that	can	be	further	checked	at	the	post-processing	stage.	In	general,	one	
can	implement	its	own	packet	format,	variants	or	new	functionalities	(such	as	AES	

R
an

ge

Throughput

LoRa%
mode BW CR SF 5%bytes 55%bytes

105%
bytes

155%
Bytes

205%
Bytes

255%
Bytes

max%thr.%for%
255B%in%bps

1 125 %4/5 12 0.95846 2.59686 4.23526 5.87366 7.51206 9.15046 223
2 250 %4/5 12 0.47923 1.21651 1.87187 2.52723 3.26451 3.91987 520
3 125 %4/5 10 0.28058 0.69018 1.09978 1.50938 1.91898 2.32858 876
4 500 %4/5 12 0.23962 0.60826 0.93594 1.26362 1.63226 1.95994 1041
5 250 %4/5 10 0.14029 0.34509 0.54989 0.75469 0.95949 1.16429 1752
6 500 %4/5 11 0.11981 0.30413 0.50893 0.69325 0.87757 1.06189 1921
7 250 %4/5 9 0.07014 0.18278 0.29542 0.40806 0.5207 0.63334 3221
8 500 %4/5 9 0.03507 0.09139 0.14771 0.20403 0.26035 0.31667 6442
9 500 %4/5 8 0.01754 0.05082 0.08154 0.11482 0.14554 0.17882 11408
10 500 %4/5 7 0.00877 0.02797 0.04589 0.06381 0.08301 0.10093 20212

time%on%air%in%second%for%payload%size%of

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	50	

encryption)	by	defining	a	specific	format	in	[DATA]	and	make	the	appropriate	decoding	at	
the	post-processing	stage.	

5.4. Building	a	low-cost	IoT	device	

As	indicated	previously,	the	availability	of	low-cost,	open-source	hardware	platforms	such	as	
Arduino-like	boards	is	clearly	an	opportunity	for	building	low-cost	IoT	devices	from	
consumer	market	components.	Our	long-range	communication	library	therefore	targets	such	
Arduino-like	boards:	original	Arduino	boards	(Uno,	MEGA,	Due,	Micro,	Pro	Mini,	Nano,	M0)	
but	also	many	other	Arduino-compatible	boards	from	Sparkfun,	Teensy,	Adafruit	Feather,	
RFduino,	Ideetron	Nexus,	Sodaq,...	if	they	have	compatibility	with	the	Arduino	IDE.	One	main	
issue	for	an	easy	eligible	board	being	the	availability	of	a	built-in	3.3v	pin	to	power	the	radio	
to	avoid	an	extra	voltage	regulator.	Figure	41	shows	our	long-range	communication	library	
long-range	library	supporting	various	Arduino	boards	and	LoRa	radio	modules.	All	of	these	
boards	and	radio	modules	have	been	successfully	tested	and	we	are	continuously	testing	
new	boards	and	radio	modules.	

	

Figure	41	–	The	long-range	library	for	Arduino-compatible	boards	and	LoRa	radio	modules	

Additionally,	some	radio	shields	from	the	market	are	actually	based	on	the	radio	modules	
supported	by	WAZIUP.	This	is	the	case	for	the	quite	interesting	Dragino	product	line	which	is	
based	on	the	HopeRF	RFM95W	:	LoRaBee,	LoRa/GPS	shield,	LoRa	Shield	and	Dragino	LoRa	
GPS	Hat	shield.	Figure	42	below,	with	images	taken	from	Dragino,	shows	from	left	to	right	
the	aforementioned	products.	

Long-Range communication library

Libelium LoRa
HopeRF
RFM92W/95W

Modtronix
inAir9/9B

LoRa radios that
our library already
supports NiceRF

LoRa1276

Ideetron Nexus TeensyLC/3.1/3.2

Adafruit Feather 32u4/M0

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	51	

	

Figure	42	–	Dragino	LoRa	product	line	based	on	HopeRF	RFM95W	

In	the	context	of	WAZIUP,	we	use	the	Arduino	Pro	Mini	in	its	3.3v	and	8MHz	version	for	
simple,	small-memory	applications	such	as	telemetry	applications.	Such	Arduino	Pro	Mini	
can	be	purchased	for	about	1.5€	a	piece	from	Chinese	manufacturers.	We	then	use	the	
Teensy31/3.2/LC	for	more	power/memory	demanding	applications.		

5.4.1. Software	integration	for	long-range	IoT	device	

At	the	end-device,	the	main	software	components	are	the	long-range	communication	library	
and	the	predefined	building	blocks	for	realizing	generic	tasks	such	as	duty-cycled	behaviour,	
physical	sensor	management,	low-power	management	and	encryption.	Figure	43	shows	the	
software	building	blocks	for	easy	integration	of	long-range	IoT	devices.	
	

	

Figure	43	–	Software	building	blocks	for	easy	integration	of	long-range	IoT	devices	

Low-power	is	an	important	feature	for	WAZIUP	and	IoT	in	general.	One	advantage	of	using	
mass-market	components	is	also	the	availability	of	a	large	variety	of	software	libraries.	For	
the	generic	sensor	device	based	on	the	Arduino	Pro	Mini	or	the	Teensy,	we	use	specific	low-
power	libraries	that	are	capable	of	considerably	reducing	the	power	consumption	of	the	
device	by	providing	deep	sleep	or	hibernate	modes.	The	security	building	block	is	also	an	
important	feature	that	WAZIUP	provides:	AES	128-bit	encryption	mode	is	supported	to	
provide	both	security	and	compatibility	with	LoRaWAN	if	necessary.	

Physical
sensor
reading

Physical
sensor
reading

Physical
sensor
reading

Physical
sensor

management

Long-range
transmission

Activity duty-
cycle, low

power

Logical sensor
management Security

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	52	

5.4.2. Software	templates	for	quick	and	easy	appropriation	

We	have	developed	a	number	of	examples	to	demonstrate	how	simple,	yet	effective,	low-
cost	LoRa	IoT	device	can	be	programmed.	For	instance,	they	show	how	LoRa	radio	modules	
are	configured	and	how	a	device	can	send	sensed	data	to	a	gateway.	They	actually	serve	as	
template	for	future	developments.		

Arduino_LoRa_Ping_Pong	shows	a	simple	ping-pong	communication	between	a	LoRa	device	
and	a	gateway	by	requesting	an	acknowlegment	for	data	messages	sent	to	the	gateway.	

Arduino_LoRa_Simple_temp	illustrates	how	a	simple	LoRa	device	with	temperature	data	
can	be	flashed	to	an	Arduino	board.	The	example	illustrates	in	a	simple	manner	how	to	
implement	most	of	the	features	of	a	real	IoT	device:	periodic	sensing,	transmission	to	
gateway,	duty-cycle	and	low-power	mode	to	run	on	battery	for	months.	

Arduino_LoRa_temp	illustrates	a	more	complex	example	by	adding	a	custom	Carrier	Sense	
mechanism	that	you	can	easily	modify,	AES	encryption	and	the	possibility	to	send	LoRaWAN	
packet.	It	can	serve	as	a	template	for	a	more	complex	LoRa	IoT	device.	

Arduino_LoRa_Generic_Sensor	is	a	very	generic	sensor	template	where	a	large	variety	of	
new	physical	sensors	can	be	added.	All	physical	sensors	must	be	derived	from	a	base	Sensor	
class	(defined	in	Sensor.cpp	and	Sensor.h)	and	should	provide	a	get_value()	and	
get_nomenclature()	function.	All	the	periodic	task	loop	with	duty-cycle	low-power	
management	is	already	there	as	in	previous	examples	:	the	duty-cycle	building	block	can	be	
configured	to	trigger	sensor	reading	every	M	minutes.	All	sensors	connected	to	the	board	
will	be	polled	and	the	returned	values	concatenated	into	a	message	string	for	transmission.	
Some	predefined	physical	sensors	are	also	already	defined:	

- very	simple	LM35DZ	analog	temperature	sensor	
- digital	DHT22	temperature	and	humidity	sensor	
- digital	DS18B20	temperature	sensor	
- ultra-sonic	HC-SR04	distance	sensor	
- Davies	Leaf	Wetness	sensor	
- general	raw	analog	sensor	

Arduino_LoRa_InteractiveDevice	is	a	tool	that	turns	an	Arduino	board	to	an	interactive	
device	where	a	user	can	interactively	enter	data	to	be	sent	to	the	gateway.	AES	encryption	
and	the	possibility	to	send	LoRaWAN	packet	is	included.	There	are	also	many	parameters	
that	can	dynamically	be	configured.	This	example	can	serve	for	test	and	debug	purposes	as	
well.	

5.4.3. Programming	the	board	

Programming	and	deploying	the	low-cost	end-device	is	made	very	simple	thanks	to	the	
usage	of	Arduino	boards	and	Arduino	IDE.	These	steps	are	described	in	details	in	the	various	
tutorials	that	were	developed	for	WAZIUP.	We	show	here	some	figures	to	illustrate	the	
simplicity	that	we	want	to	provide	to	end-users	or	third-parties.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	53	

	

	

Ge#ng	the	so+ware	

Fisrt, you will need the Arduino IDE 1.6.6 or later (left). Then get the LoRa library from our github:
https://github.com/CongducPham/LowCostLoRaGw (right).

Get into the Arduino folder and get both Arduino_LoRa_temp and SX1272 folder. Copy
Arduino_LoRa_temp into your “sketch” folder and SX1272 into “sketch/libraries”

Compiling	

Open the Arduino_LoRa_temp sketch and select the Arduino Pro Mini board with its 3.3V &
8MHz version.

Then, click on the « verify » button

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	54	

	

	

Uploading	(1)	

For the Pro Mini, you need to have an FTDI breakout cable working at 3.3v level (there is also 5v
version but our advised Pro Mini version is running at 3.3v to reduce energy consumption). Be
careful, on some low-cost Pro Mini version (Chinese manufacturer for instance) the pins may be
in reversed order. The simplest way in to check the VCC pin and make it to correspond to the
VCC pin of the FTDI breakout.

VCC

Original Sparkfun version

Some clone version, check the VCC pin

Uploading	(2)	

Connect the USB end to your computer and the USB port should be detected in the Arduino IDE.
Select the serial port for your device. It may have another name than what is shown in the
example. Then click on the « upload » button

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	55	

Once	programmed	with	for	instance	the	Arduino_LoRa_Simple_temp	template,	the	end-
device	is	fully	operational	and	start	the	periodic	sensing	and	transmission.	In	Figure	44,	the	
temperature	is	18.5	°C.		The	next	section	will	describe	the	low-cost	gateway	part.	
	

	

Figure	44	–	Simple	temperature	sensor		with	periodic	sensing	and	transmission	

5.4.4. Customization	of	templates	

The	templates	can	easily	be	customized	by	changing	some	define	statements	and	variables	
that	are	clearly	identified	in	the	template	code.	We	summarize	below	the	main	parts	that	
can	be	customized	for	adaptation	to	use	cases.	

///
// please uncomment only 1 choice
//
#define ETSI_EUROPE_REGULATION
//#define FCC_US_REGULATION
//#define SENEGAL_REGULATION
///

Serial	monitor	

You can see the output from the sensor if it is connected to your computer. Use the Arduino IDE
« serial monitor » to get such output, just to verify that the sensor is running fine, or to debug new
code. Be sure to use 38400 baud.

\!##TC/18.5

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	56	

///
// please uncomment only 1 choice
#define BAND868
//#define BAND900
//#define BAND433
///

///
//
// uncomment if your radio is an HopeRF RFM92W, HopeRF RFM95W, Modtronix inAir9B, NiceRF1276
// or you known from the circuit diagram that output use the PABOOST line instead of the RFO
//#define PABOOST
///

///
// COMMENT OR UNCOMMENT TO CHANGE FEATURES.
// ONLY IF YOU KNOW WHAT YOU ARE DOING!!! OTHERWISE LEAVE AS IT IS
#if not defined _VARIANT_ARDUINO_DUE_X_ && not defined __SAMD21G18A__
#define WITH_EEPROM
#endif
#define WITH_APPKEY
#define FLOAT_TEMP
//#define NEW_DATA_FIELD
#define LOW_POWER
#define LOW_POWER_HIBERNATE
//#define WITH_ACK
///

///
// CHANGE HERE THE LORA MODE, NODE ADDRESS
#define LORAMODE 1
#define node_addr 10
//

///
// CHANGE HERE THE TIME IN MINUTES BETWEEN 2 READING & TRANSMISSION
unsigned int idlePeriodInMin = 10;
///

5.4.5. IoT	device	power	consumption	tests	

We	did	some	power	consumption	measures	using	the	Arduino_LoRa_Simple_temp	
template	and	the	Modtronix	inAi9	radio	module	where	the	transmission	power	is	set	to	
14dBm.	Figure	45	shows	our	energy	consumption	tests	for	an	Arduino	Pro	Mini.		
	

	

Figure	45	–	power	consumption	and	low-power	tests	

	

Thanks to T. Mesplou and P. Plouraboué for their help

Low-Power library from RocketScream

Wakes-up every
10min, take a
measure (temp) and
send to GW

120µA in deep
sleep mode,
93mA when active
and sending

Can run for 100 days with 1
measure/10min

Can run for 1 year with 1
measure/1h 2500mAh

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	57	

Using	the	very	low-cost	Pro	Mini,	energy	consumption	in	deep	sleep	mode	can	be	as	low	as	

120uA	with	very	small	and	easy	modification	to	the	board	(mainly	removing	the	power	led).	
When	transmitting,	the	power	consumption	jumps	to	93mA.	We	did	the	same	tests	for	the	
Teensy	boards	and	with	the	Teensy	LC	the	preliminary	test	shows	an	energy	consumption	of	

about	90uA	in	hibernate	mode	for	a	board	that	is	much	more	powerful	than	the	Pro	Mini.	

Table	1	below	summarizes	the	preliminary	power	consumption	tests	that	we	did	with	the	
Arduino	Pro	Mini,	the	Teensy	LC	and	the	Teensy31.	All	the	tests	use	the	
Arduino_LoRa_Simple_temp	template	and	the	Modtronix	inAir9	radio	module.	The	active	
state	is	measured	when	the	board	is	not	transmitting.	
	

Test	setting	 Power	consumption	

Pro	Mini	3.3v	8MHz	 	
Active	 20mA	
Deep	Sleep	 120uA	

Teensy	LC	 	
Active	at	24MHz	 12mA	
Active	at	48MHz	 15mA	
Hibernate	 80uA-90uA	

Teensy	3.1	 	
Active	at	24MHz	 20mA	
Active	at	48MHz	 30mA	
Active	at	72MHz	 34mA	
Hibernate	 115uA-120uA	

Table	1	–	Summary	of	energy	consumption	for	Pro	Mini	and	Teensy	boards	

We	will	describe	in	more	details	the	energy	requirements	of	the	whole	system	in	section	5.6.	

5.4.6. IoT	device	integration	for	outdoor	usage	

With	all	the	provided	building	blocks,	realizing	IoT	device	integration	for	outdoor	usage	can	
be	done	easily.	Figure	46	shows	a	Chinese	Pro	Mini	powered	with	4	AA	batteries	and	fitted	
into	a	water-proof	case.	We	provide	a	specific	tutorial	for	building	such	IoT	devices.	
	

	
	

Arduino Pro Mini

3.3v and 8MHz version

V
C

C

M
O

S
I

M
IS

O

C
LK

C
S

G
N

D

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	58	

	

Figure	46	–	Low-cost	hardware	integration	

More	information	are	detailed	in	:	

[Doc]	Low-cost	LoRa	IoT	platform	part	list		
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/low-cost-iot-hardware-parts.pdf		

[Slides]	"Low-cost	LoRa	IoT	device:	a	step-by-step	tutorial"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-step-by-step.pdf		

[Slides]	"Building	IoT	device	for	outdoor	usage:	a	step-by-step	tutorial"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-outdoor-step-by-
step.pdf		

[Slides]	"Low-cost	LoRa	IoT	device:	supported	physical	sensors"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-supported-sensors.pdf		

[Video]	Build	your	low-cost,	long-range	IoT	device	with	WAZIUP	
https://www.youtube.com/watch?v=YsKbJeeav_M		

5.5. Building	a	low-cost	gateway	

5.5.1. Gateway	hardware	and	architecture	

Our	LoRa	low-cost	gateway	can	be	qualified	as	"single	connection"	as	it	is	built	around	an	
SX1272/76,	much	like	an	end-device	would	be.	The	low-cost	gateway	is	based	on	a	
Raspberry	PI	(1A+/1B/1B+/2B/3B)	which	is	both	a	low-cost	and	a	reliable	embedded	Linux	
platform.	To	install	the	Raspberry,	our	pre-installed	SD	card	image	can	be	downloaded	(on	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/raspberrypi-jessie-WAZIUP-demo.dmg.zip).	
Complete	instructions	to	install	from	scratch	with	the	Raspbian	OS	is	also	provided.	When	all	
the	software	components	are	installed,	a	radio	module	can	be	connected.	Figure	47	shows	
the	various	steps	for	building	our	low-cost	LoRa	gateway.	

The	gateway	software	architecture	has	been	designed	for	maximum	flexibility	and	easy	
third-party	appropriation	and	customization.	In	our	gateway	architecture	we	clearly	want	to	
decouple	the	specific	lower	level	radio	bridge	program	from	the	higher-level	data	post-
processing	stage	that	must	be	easily	customized	by	third	parties.	The	data	post-processing	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	59	

block	(orange	block	in	Figure	48)	is	written	in	high-level	language	(e.g.	Python)	for	simplicity	
and	maximum	customization	possibilities	by	third-parties.	

	

Figure	47	–	Low-cost	single	channel	LoRa	gateway	

As	can	be	seen	in	the	right	part	of	Figure	48,	the	WAZIUP	project	will	provide	most	of	the	
gateway	software	logic,	with	the	top	layer	being	highly	customizable	for	specific	application's	
needs.	
	

	

Figure	48	–	Gateway	architecture	

As	can	be	seen,	the	post-processing	block	is	the	core	of	all	incoming	packet	data	processing	
tasks.	We	provide	a	Python	template	for	the	post-processing	block	(post_processing_gw.py)	
and	Figure	49	shows	a	detailed	view	of	the	proposed	post-processing	template	components	
and	features.	The	main	component	is	the	«	incoming	data	parsing	block	»	that	calls	

user/app-specific	cloud	scripts.	Our	post-processing	template	also	provides	additional	
features	such	as	gateway	temperature	monitoring	(with	a	DHT22	sensor	connected	to	the	

We can use all model of Raspberry. The most important usefull
feature is the Ethernet interface for easy Internet connection.
Then WiFi and Bluetooth can be added with USB dongles.
RPI3 provides built-in Ethernet, WiFi and Bluetooth!

Less than 50€

Raspbian

Long-range radio lib

lora_gateway program

radio
bridge

program

stdout

stdin

post
processing

Kept as simple
as possible

hi
gh

-le
ve

l l
an

g.
e.

g.
 p

yt
ho

n

Most of user or
application specific
logics is done here!
We provide some
basic features, up to
you to enhance them

stdout

post-
processing

user/app-
specific

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	60	

gateway),	AES	encryption	and	decryption,	management	downlink	data	request,	
management	of	data	from	other	radio	interfaces	and	simple	LoRaWAN	interoperability.	
These	2	last	features	will	be	described	in	more	details	in	Section	6	and	Section	7	respectively.	

	

Figure	49	–	post-processing	block	template	

5.5.2. Lower	level	radio	bridge	and	post-processing	block	interaction	

As	shown	in	Figure	49,	the	lower	level	radio	bridge	write	formatted	received	data	to	stdout	
and	the	post-processing	block	will	read	from	stdin.	

For	each	incoming	LoRa	packet,	the	lower	level	radio	bridge	will	write	the	5	following	
formatted	strings:	

1. ^p.	Indicates	a	packet	info	string	formatted	as	follows	:	
^pdst(%d),ptype(%d),src(%d),seq(%d),len(%d),SNR(%d),RSSI(%d)	
e.g.	^p1,16,3,0,10,8,-45	

2. ^r.	Indicates	a	radio	info	string	formatted	as	follows	:		^rbw(%d),cr(%d),sf(%d)	
e.g.	^r125,5,12		

3. ^t.	Indicate	a	timestamp	info	string	formatted	as	follows	:		
^ttime(%s)	
e.g.	^t2016-12-25T01:15:11.264700	

4. \xFF\xFE.	2-bytes	prefix	to	indicate	incoming	packet	payload	

5. received	packet	payload	

radio
bridge

program

stdout

stdin

post
processing

post-processing

Incoming data	
parsing block

Handle
downlink
data

cloud_script_1

user/app-specific

Monitor	
gateway

temperature

LoRaWAN
interoperability

Handle data	
from other

radio	interfaces

stdout

cloud_script_2 cloud_script_n

AES
encryption
decryption

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	61	

For	instance	if	“hello”	from	sensor	6	is	received	at	the	lower	level	radio	bridge,	the	following	
strings	will	be	written	to	stdout,	assuming	LoRa	mode	1	(see	Figure	40	for	a	list	of	LoRa	
modes):	

^p1,16,6,0,5,8,-45
^r125,5,12
^2016-12-25T01:51:11.058
\xFF\xFEhello

	
The	post-processing	block	will	read	these	strings	to	get	packet	info,	radio	info,	timestamp	
info	and	finally	packet	payload	content	to	take	further	action	such	as	parsing	the	payload	
content	and	eventually	upload	payload	content	to	IoT	clouds.	The	current	post-processing	
template	would	show	the	following	output	when	receiving	the	previous	strings	:	

2016-12-25T00:51:11.059762
rcv ctrl pkt info (^p): 1,16,6,0,5,8,-45
splitted in: [1, 16, 6, 0, 5, 8, -45]
(dst=1 type=0x10(DATA) src=6 seq=0 len=5 SNR=8 RSSI=-45)
rcv ctrl radio info (^r): 125,5,12
splitted in: [125, 5, 12]
(BW=500 CR=5 SF=12)
rcv timestamp (^t): 2016-12-25T01:51:11.058
got first framing byte
--> got data prefix
hello

5.5.3. What	clouds	for	low-cost	IoT?	

If	the	gateway	is	connected	to	the	Internet	as	shown	in	Figure	50,	data	received	on	the	
gateway	are	usually	pushed/uploaded	to	some	Internet/cloud	servers	such	as	the	WAZIUP	
Cloud	Platform	(see	WAZIUP	D3.1).	These	tasks	are	handled	by	the	post-processing	stage	as	
previously	illustrated	in	Figure	49.	

	

Figure	50	–	Post-processing	stage	with	Internet	connectivity.	

radio
bridge

program

stdout

stdin

post
processing

Kept as simple
as possible

hi
gh

-le
ve

l l
an

g.

e.
g.

 p
yt

ho
n

Most of user or
application specific
logics is done here!
We provide some
basic features, up to
you to enhance them

stdout

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	62	

Additionally,	it	is	important	in	the	context	of	developing	countries	to	be	able	to	use	a	wide	
range	of	infrastructures	and,	if	possible,	at	the	lowest	cost.	Fortunately,	along	with	the	
global	IoT	uptake,	there	is	also	a	tremendous	availability	of	sophisticated	and	public	IoT	
clouds	platforms	and	tools,	offering	an	unprecedented	level	of	diversity	which	contributes	to	
limit	dependency	to	proprietary	infrastructures.	Many	of	these	platforms	offer	free	accounts	
with	limited	features	but	that	can	already	satisfy	the	needs	of	most	agriculture/micro	and	
small	farm/village	business	models.	It	is	therefore	desirable	to	highly	decouple	the	low-level	
stage	gateway	functionalities	from	the	high-level	stage	with	data	post-processing	features,	
privileging	high-level	languages	for	the	latter	stage	(e.g.	Python)	so	that	customizing	data	
management	tasks	can	be	done	in	minutes,	using	standard	tools,	simple	REST	API	interfaces	
and	available	public	clouds	as	depicted	in	Figure	51	with	publicly	available	IoT	clouds	such	as	
FireBase,	ThingSpeak	or	GroveStreams.	
	

	

Figure	51	–	From	gateway	to	IoT	clouds	

5.5.4. Uploading	to	clouds	

To	indicate	that	a	payload	content	should	be	uploaded	to	IoT	clouds,	the	current	post-
processing	block	uses	the	«	\	!	»	prefix.	For	each	IoT	cloud	that	is	enabled	at	the	gateway,	a	
cloud	script	should	be	provided.	The	cloud	script	will	typically	dissect	the	payload	to	extract	
relevant	information	and	will	upload	the	relevant	information	to	the	corresponding	cloud	
platform	using	adequate	commands.		

The	post-processing	block	will	parse	a	clouds.json	file	that	contains	a	list	of	clouds	definitions	
for	data	to	be	uploaded.	Here	is	an	example	with	3	clouds:	local	MongoDB,	ThingSpeak	and	
Grovestreams.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	63	

	

 {
 "clouds" : [
 {
 "notice":"do not remove"
 "name":"Local gateway MongoDB",
 "script":"python CloudMongoDB.py",
 "type":"database",
 "max_months_to_store":2,
 "enabled":false
 },
 {
 "name":"ThingSpeak cloud",
 "script":"python CloudThingSpeak.py",
 "type":"iotcloud",
 "write_key":"",
 "enabled":true
 },
 {
 "name":"GroveStreams cloud",
 "script":"python CloudGroveStreams.py",
 "type":"iotcloud",
 "write_key":"",
 "enabled":true
 }
 }

For	each	cloud	declaration,	there	are	only	2	relevant	fields:	"script"	and	"enabled".	"script"	is	
used	to	provide	the	name	of	a	script.	The	launcher	that	will	be	used	must	also	be	indicated.	
Actually,	"script"	is	more	a	command	line	than	a	file	name.	In	this	way,	several	script	
languages	can	be	used	(including	shell	scripts	and	binary	executables	provided	that	they	read	
parameters	that	are	passed	by	their	command	line).	For	instance,	if	the	script	is	a	python	
script,	"script"	should	contain	"python	my_script_filename".		

"enabled",	when	set	to	true,	indicates	that	this	cloud	is	active	so	that	the	post-processing	
block	will	call	the	associated	script	to	perform	upload	of	the	received	data.	All	the	other	
fields	are	not	relevant	for	the	post-processing	block	but	can	be	used	by	the	associated	script	
to	get	additional	information	that	the	user	may	want	to	provide	through	the	clouds.json	file.	

After	parsing	clouds.json,	the	post-processing	block	has	the	list	of	enabled	clouds	as	shown	
in	the	following	output	from	the	post-processing	block	:	

Parsing cloud declarations
[u'python CloudThingSpeak.py']
[u'python CloudThingSpeak.py', u'python CloudGroveStreams.py']
Parsed all cloud declarations
post_processing_gw.py got cloud list:
[u'python CloudThingSpeak.py', u'python CloudGroveStreams.py']

Then,		assuming	that	_enabled_clouds	contains:	

['python CloudThingSpeak.py', 'python CloudGroveStreams.py']

the	main	data	upload	processing	loop	in	the	post-processing	block	is	now	very	simple	and	
looks	as	follows:	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	64	

 #ldata will contain the payload
ldata = getAllLine()

 print "number of enabled clouds is %d" % len(_enabled_clouds)

 #loop over all enabled clouds to upload data
 #it is up to the corresponding cloud script to handle the data format
 #
 for cloud_index in range(0,len(_enabled_clouds)):
 print "--> cloud[%d]" % cloud_index
 cloud_script=_enabled_clouds[cloud_index]
 print "uploading with "+cloud_script
 cmd_arg=cloud_script+" \""+ldata+"\""+" \""+pdata+"\""+

" \""+rdata+"\""+" \""+tdata+"\""+" \""+_gwid+"\""
 os.system(cmd_arg)
 print "--> cloud end"

For	instance,	we	provide	the	CloudThingSpeak.py	template	script	that	accepts	the	following	
formatted	content:	«	write_key#field_index#TC/18.5	».	If	write_key	and	field_index	are	not	
specified,	then	the	default	write	key	and	field	index	will	be	used.	Therefore,	an	IoT	device	
sending	«	\	!##TC/18.5	»	as	illustrated	previously	in	Figure	44	will	trigger	at	the	gateway	the	
execution	of	the	CloudThingSpeak.py	script	that	will	upload	«	18.5	»	to	the	default	
ThingSpeak	channel	at	the	default	field	index.	With	the	previous	example,	the	execution	of	
the	main	data	upload	processing	loop	will	look	as	follows,	with	text	in	red	printed	by	the	
cloud	script	while	text	in	black	are	those	printed	by	the	main	processing	loop:	

 number of enabled clouds is 2
 --> cloud[0]
 uploading with python CloudThingSpeak.py
 ThingSpeak: uploading
 rcv msg to log (\!) on ThingSpeak (default , 4): 18.5
 ThingSpeak: will issue curl cmd
 curl -s -k -X POST --data field4=18.5 https://api.thingspeak.com/[…]
 ThingSpeak: returned code from server is 156
 --> cloud[1]
 uploading with python CloudGroveStreams.py
 GroveStreams: uploading
 Grovestreams: Uploading feed to: /api/feed?compId=node_6&TC=18.5
 --> cloud end

More	information	are	detailed	in:	

[Doc]	Low-cost	LoRa	IoT	platform	part	list		
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/low-cost-iot-hardware-parts.pdf		

[Slides]	"Low-cost	LoRa	gateway:	a	step-by-step	tutorial"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-GW-step-by-step.pdf		

[Slides]	"Low-cost	LoRa	IoT	antenna	tutorial	for	gateway"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-antennaCable.pdf		

[Slides]	"Low-cost	LoRa	IoT:	using	the	WAZIUP	demo	kit"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-using-demo-kit.pdf		

[Video]	Build	your	low-cost	LoRa	gateway	with	WAZIUP	
https://www.youtube.com/watch?v=peHkDhiH3lE		

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	65	

5.6. Energy	requirements	of	the	whole	system		

5.6.1. Measured	energy	consumption	

As	shown	previously	in	Figure	45,	the	energy	consumption	of	an	Arduino	Pro	Mini	in	its	3.3v	
and	8MHz	version	is	about	120uA	in	deep	sleep	mode.	With	a	scenario	of	periodic	sensing	
and	transmission	once	every	hour,	the	sensor	can	be	active	for	sensing	and	transmission	
between	2.5s	and	6s	depending	on	the	number	of	connected	sensors.	The	transmission	of	
the	sensed	data	using	the	LoRa	mode	that	provides	the	longest	range	(i.e.,	mode	1)	takes	
about	1.5s,	leaving	about	1s	to	4.5s	for	polling	and	reading	the	physical	sensor.	In	the	
polling/reading	state,	the	consumption	is	about	20mA.	During	transmission,	the	
consumption	is	about	93mA.	Therefore	the	mean	consumption/hour	can	be	estimated	as:	

	 E2.5	=	[0.120	x	3597.5	+	93	x	1.5	+	20	x	1]	/	3600	=	0.164mA	

	 E6	=	[0.120	x	3594	+	93	x	1.5	+	20	x	4.5]	/	3600	=	0.183mA	

In	both	scenarios,	using	traditional	2500mAh	batteries,	the	expected	lifetime	can	
theoretically	be	longer	than	a	year.	We	have	a	simple	temperature	sensor	running	on	4	AA	
batteries	since	April	6th,	2016	for	real	tests	on	autonomy.	Real	time	data	are	pushed	to	a	
ThingSpeak	channel	:	https://thingspeak.com/channels/66583,	see	data	for	‘Sensor	6’.		
	

	 	

Figure	52	–	Raspberry	power	consumption	(left),	10000mAh	USB	charging	pack	(right)	

At	the	gateway	side	running	on	a	Raspberry	PI,	we	measured	the	consumption	to	be	
between	100mA	and	330mA	depending	on	the	Raspberry	version:	from	version	1A+	to	
version	3.	Our	RPI3-based	gateway	with	Internet	via	Ethernet	and	both	WiFi	and	Bluetooth	
interfaces	enabled	consumes	about	320mA	in	continuous	reception	mode.	This	consumption	
level	roughly	corresponds	to	the	idle	case	shown	in	Figure	52	left	(taken	from	
https://www.raspberrypi.org/magpi/raspberry-pi-3-specs-benchmarks/)	as	the	radio	
module’s	consumption	is	very	small.	The	‘load’	power	consumption	values	shown	in	Figure	
52	correspond	to	heavy	CPU	computation	benchmarks.	

The	usual	setting	for	such	a	gateway	is	to	run	with	traditional	wall-plug	power	supply.	There	
are	however	some	bigger	battery	packs	such	as	those	used	for	smartphone	recharging	that	
can	be	used	to	power	the	Raspberry	gateway	for	more	than	10	hours.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	66	

5.6.2. Investigating	usage	of	solar	panels	

Nowadays,	it	is	quite	easy	to	power	small	electronic	devices	from	rechargeable	batteries	plus	
solar	panels.	There	are	some	mass-market	integrated	products	such	as	those	dedicated	for	
on-the-go	smartphone	recharging.	One	sample	is	illustrated	in	Figure	53.	

	

Figure	53	–	Mass-market	integrated	USB	solar	charging	pack	

For	instance,	if	a	Raspberry	A+	is	used	for	the	gateway,	a	10000mAh	battery	can	power	the	
gateway	for	several	hours.	If	the	battery	pack	can	be	recharged	from	the	Sun	at	the	same	
time	then	the	idea	of	a	fully	autonomous	gateway	can	be	reality.	Such	gateway	can	be	used	
in	a	standalone	manner	as	it	will	be	described	later	on.	

More	elaborated	and	dedicated	charging	circuit	can	also	be	found	easily	to	handle	solar	
panel	and	rechargeable	batteries	(e.g.	LiPo).	There	are	also	experiments	addressing	
deployment	of	solar-powered	LoRa	gateways	(such	as	the	one	reported	at	
http://embeddedexperience.blogspot.fr/2015/05/first-lora-network-now-open.html)	and	
these	issues	will	be	further	investigated.	

5.6.3. Internet	connectivity	with	2G/3G	shield/dongle	

Cellular	Internet	connectivity	can	be	provided	to	the	Raspberry	gateway	using	either	shields	
or	dongles.	Figure	54	shows	a	3G	shield	and	a	USB	3G	dongle	that	can	be	connected	to	the	
Raspberry	gateway.	

	 	 	

Figure	54	–	3G	shield	(left)	and	3G	dongle	(right)	

The	energy	consumption	of	these	devices	is	quite	high	and	further	tests	will	be	investigated	
in	WAZIUP.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	67	

5.7. Running	without	Internet	connectivity	

Our	gateway	can	also	handle	cases	where	Internet	connectivity	is	not	available	as	data	can	
be	locally	stored	on	the	gateway	in	a	NoSQL	MongoDB	database	as	illustrated	in	Figure	55.	
	

	

Figure	55	–	Gateway	without	Internet	access	

The	gateway	can	either	be	used	as	an	end-computer	by	just	attaching	a	keyboard	and	a	
display,	or	it	can	also	interact	with	the	end-users'	computing	device	(smartphone,	tablet).	
Figure	56	shows	the	gateway’s	embedded	web	server	and	a	specific	Android	smartphone	
application	displaying	the	content	of	the	local	MongoDB	database.	
	

	

Figure	56	–	Autonomous	gateway	for	no-Internet	access	deployment	scenarios	

	

radio
bridge

program

stdout

stdin

post
processing

Kept as simple
as possible

hi
gh

-le
ve

l l
an

g.
e.

g.
 p

yt
ho

n

Most of user or
application specific
logics is done here!
We provide some
basic features, up to
you to enhance them

stdout

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	68	

With	Raspberry	1	or	2,	WiFi	or	Bluetooth	dongles	for	Raspberry	can	be	found	at	really	low-
cost	but	the	Raspberry	PI3	already	comes	with	embedded	WiFi	and	Bluetooth	and	is	
therefore	more	interesting.	A	smartphone	can	be	used	to	display	captured	data	and	notify	
users	about	important	events	without	the	need	of	Internet	access	as	this	situation	can	
clearly	happen	in	very	isolated	areas.	

If	such	a	gateway	is	operated	with	a	high-capacity	battery	(see	Figure	53)	that	can	power	the	
gateway	for	about	10	hours,	one	can	then	imagine	fully	autonomous	long-range	sensing	
applications	such	as	a	cattle	rustling	application	using	beacon-collar	devices	as	illustrated	
in	Figure	57.	The	figure	shows	an	autonomous	gateway	powered	with	a	high-capacity	
battery	pack/solar	panel	that	is	used	by	a	farmer	to	collect	beacons	from	collars	placed	on	
cows	of	the	herd.	The	embedded	web	page	provided	by	the	gateway	is	accessed	on	the	
farmer’s	smartphone	and	alerts	can	be	indicated	if	some	beacons	are	not	received.	The	RSSI	
can	also	give	some	indications	on	the	distance	of	the	cows	(the	RSSI	issues	will	be	
investigated	in	more	detailed	in	the	future	for	the	Cattle	Rustling	Use	Case).	
	

	

Figure	57	–	Fully	autonomous	cattle	rustling	application	

	

5.8. Software	and	tutorial	materials	available	on	the	github	

All	the	software	for	both	IoT	devices	and	gateway	are	distributed	through	a	github	
repository:	https://github.com/CongducPham/LowCostLoRaGw	with	extensive	REAME	files	
for	explanations.	The	gateway	part	has	already	been	be	integrated	and	structured	into	the	
WAZIUP	repository	as	the	IoT	Bridge	component:	
https://github.com/Waziup/Platform/tree/master/gateway/IoTBridge.		The	IoT	Bridge	
component	in	the	WAZIUP	platform	is	composed	of	a	low-level	part	and	of	a	high-level	part	
which	is	the	post-processing	stage	described	previously	in	Figure	49.	
		

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	69	

	

Figure	58	–	github	repository	for	IoT	devices	and	gateway	

5.9. WAZIUP	demo	kit	

As	part	of	WP2,	we	also	packaged	a	WAZIUP	demo	kit	consisting	in	a	low-cost	gateway	and	a	
simple	temperature	IoT	device,	see	Figure	59	and	Figure	60.	The	gateway	is	pre-configured	
to	upload	received	data	to	the	WAZIUP	LoRa	ThingSpeak	demo	channel	:	
https://thingspeak.com/channels/123986.		
	

	

Figure	59	–	WAZIUP	LoRa	demo	kit	

Unpack the demo kit

Be carefull, the wire are
fragile. The floating red
wire are normal, don’t
connect them now!

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	70	

	 	

Figure	60	–	demo	gateway	(left)	and	demo	IoT	device	(right)	

The	IoT	end-device	runs	the	Arduino_LoRa_Simple_temp	template	and	works	«	out-of-the-
box	»	with	the	preconfigured	gateway	as	illustrated	in	Figure	61.	It	also	acts	as	a	WiFi	access-
point	and	content	of	the	local	MongoDB	database	can	be	accessed	through	the	embedded	
web	server	as	depicted	in	Figure	62.	This	behavior	is	highly	appreciated	in	demo	sessions	

especially	when	using	participants’	own	smartphones	to	connect	to	the	gateway.	

	

	

Raspberry PI with LoRa radio module and WiFi Arduino Pro Mini with LoRa radio module & temperature sensor

q Once switched on the end-device will
1. Initialize the radio
2. Take a measure (temperature)
3. Send the measure to gateway
4. Go to sleep for 10 minutes and repeat from step 2

q After demonstration, just disconnect the VCC
wires (red)

q No need to remove the batteries

Takes about 4s

The default configuration in the Arduino_LoRa_Simple_temp example is:

Send packets to the gateway (one or many if in range)
Use LoRa mode 1
Node short address is 8

\!#4#TC/24.81

24.81 is an example, real temperature will be read
by temperature sensor

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	71	

	

Figure	61	–	Using	the	demo	kit		

	

Figure	62	–	Visualizing	real-time	data	with	the	embedded	web	server	

The	demo	kit	has	been	distributed	to	3	African	partners	for	demo	and	training	purposes	
during	the	WAZIUP	mid-review	meeting	that	took	place	in	September	2016.	
	

Data received at the gateway will be pushed to
the WAZIUP demo ThingSpeak channel

https://thingspeak.com/channels/123986

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	72	

	

Figure	63	–	distribution	of	the	WAZIUP	demo	kit	

More	information	are	detailed	in	:	

[Slides]	"Low-cost	LoRa	IoT:	using	the	WAZIUP	demo	kit"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-using-demo-kit.pdf		

5.10. Minimum	Viable	Products	based	on	the	IoT	platform	

The	generic	IoT	device	will	serve	for	so-called	Minimum	Viable	Product	(MVP)	
implementation	and	prototyping.	Depending	on	the	application	domain,	dedicated	physical	
sensors	will	be	connected	and	the	device’s	behavior	adapted	from	the	generic	template	as	
illustrated	in	Figure	64.	

	

	

Figure	64	–	Generic	sensor	IoT	device	platform	

WAZIUP	proposes	5	MVP	in	the	domain	of	Water/Fish	farming,	Cattle	Rustling,	Agriculture,	
Logistic	and	Urban	Waste	Management	as	illustrated	in	Figure	65.	

CTIC, Dakar,
Senegal

iSpace, Accra
Ghana

WoeLab, Lomé,
Togo

Arduino Pro Mini

3.3v and 8MHz version

V
C

C

M
O

S
I

M
IS

O

C
LK

C
S

G
N

D

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	73	

	

Figure	65	–	Minimum	Viable	Products	defined	in	WAZIUP	

	

	

Figure	66	–	Example	of	an	active	beacon	collar	system	for	cattle	rustling	applications	

MVP 1

Water
Fish Farming

MVP 2

Cattle
Rustling

MVP 3

AGRI

MVP 4

Logistic
Transport

MVP 5
Urban
Waste
mgt

Waziup
Advisory
Board

Waziup
Community

WAZIUP PROJECT
WP1
WP2
WP3
WP4
WP5
WP6

Minimum Viable Product

C
re

di
t:

P.
 C

ou
si

n,
 E

G
M

Use an Arduino Pro
Mini 3.3v at 8MHz
and a LoRa radio
module

Then you need a water-proof
box , 2 small cable gland ,
1 male connector (MC) and 1
female connector (FC)

4 AA batteries will
power the board
with an autonomy of
several months

1
1

2

2

3

3

4

4

5

6

5

6

Put all the hardware
parts in the box

See how VCC from the battery pack is
connected to the female connector FC.
Use intermediate Dupont connectors if
needed.

GND from battery pack
is connected to the
board (see arrow)

1

1

Take a 1m wire (old
USB wire for
instance)

Solder at one end a
female Dupont connector
and at the other end the
male connector MC

Use heat-shrink tubes (in
yellow)

1
1

22

3

3

When connecting
the male connector
MC to the female
connector FC ,
the board will be
powered and will
start sending
periodic beacons

1

1

Connect to RAW pin
of the Arduino Pro
Mini

GND was already
connected at previous step

Use a robust belt for the collar, fix the box on the belt. Activate the beacon collar by
connecting MC to FC by passing the long wire around the cattle’s neck. Any attempt
to remove or cut the collar will disconnect the beacon system.

The length of the wire may
need to be ajusted

Af
im

ilk
 c

oll
ar

 c
ou

rte
sy

 o
f I

. A
nd

on
ov

ic
fro

m
 U

niv
er

sit
y

of
 S

tra
th

cly
de

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	74	

For	instance,	the	Cattle	Rustling	MVP	that	proposes	an	active	beacon	system	that	was	
illustrated	previously	in	Figure	57,	adapts	the	Arduino_LoRa_Simple_temp	template	to	
implement	the	beacon	system.	Figure	66	shows	the	various	steps	for	building	the	long-range	
collar	beacon	system	from	the	generic	IoT	platform.	

5.11. Overview	of	the	WAZIUP	platform	architecture	

Figure	67	illustrates	the	proposed	IoT	platform	architecture.	The	full	LPWAN	architecture	is	
represented	by	the	top	part	taken	from	a	Semtech	illustration	where	end-nodes	are	sending	
data	to	concentrator/gateways	that	are	controlled	by	network	servers	that,	in	turn	will	
provide	data	to	application	servers.			

WAZIUP	platform	can	implement	the	full	LPWAN	architecture	with	low-cost	end-devices,	
low-cost	gateway,	the	WAZIUP	FIWare-based	data	cloud	and	WAZIUP	data	analytic	platform	
targeting	a	multi-users	scenario.	This	is	represented	by	box	A	in	Figure	67.	

However,	the	main	objective	of	WAZIUP	is	to	adapt	this	architecture	to	developing	countries	
where	it	is	desirable	to	provide	simpler	architectures,	that	take	into	account	the	issue	of	very	
small	deployment	scenario	for	single	user	(e.g.	farmer)	and	the	issue	of	Internet	
connectivity.	For	very	simple	deployment	scenario,	the	Network	Server	stage	can	easily	be	
replaced	by	a	public	&	free	IoT	cloud	account	such	as	ThingSpeak	or	GroveStreams,	
removing	the	dependency	on	a	single	network	server.	Box	B	represents	the	«	no	Internet	»	
scenario	where	the	low-cost	gateway	will	both	store	data	and	directly	interact	with	the	end-
user	with	WiFi	and	Bluetooth	devices	(e.g.	smartphones,	tablet,…).	
	

	

Figure	67	–	IoT	platform	general	architecture	

radio
bridge

program

stdout

stdin

post
processing

Fi
gu

re
 fr

om
 S

em
te

ch

Application, MVP

WAZIUP Sensor
platform

WAZIUP gateway
platform

WAZIUP platform

A

B

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	75	

6. HETEROGENEOUS	NETWORKING	

We	present	in	this	Section	how	heterogeneous	networking	is	handled	in	the	WAZIUP	IoT	
platform.	First	of	all,	we	will	not	address	the	case	where	sensor	nodes	can	have	direct	access	
to	the	Internet	with	a	GPRS/3G	or	WiFi	connection,	referred	to	as	sensor<->Internet	
connectivity.	In	these	cases	traditional	TCP/IP	protocol	stack	running	on	the	sensor	node	will	
hide	the	lower	communication	layers.	However,	a	WiFi	sensor	can	be	connected	to	the	
gateway’s	WiFi	and	therefore	can	not	have	direct	access	to	the	Internet.	In	this	case,	the	
proposed	framework	that	will	be	described	in	the	following	subsections	can	be	used	
although	a	traditional	«	Wireless-to-Wired	Ethernet	»	routing/forwarding	method	is	
probably	better	(see	for	instance	«	How	To:	Wifi	to	Ethernet	Bridge	»	at	
https://www.raspberrypi.org/forums/viewtopic.php?t=132674).	

So,		by	heterogeneity	we	mean	sensor<->gateway	radio	technology	heterogeneity.	
Gateway<->Internet	heterogeneity	is	not	really	an	issue	as	this	type	of	Internet	connectivity	
is	usually	provided	thought	a	dedicated	network	interface	with,	once	again,	traditional	
TCP/IP	protocol	stack	that	completly	hides	the	lower	communication	layers.		

This	sensor<->gateway	heterogeneity	will	be	managed	at	the	gateway	level	where	data	
coming	from	other	radio	interfaces	can	be	incorporated	into	the	post-processing	block	as	
briefly	illustrated	previously	in	Figure	49.	We	will	explain	our	proposed	approach	in	the	next	
sections.	

6.1. Heterogeneity	with	legacy	short-range	radio	technologies	

Sensor<->gateway	heterogeneity	therefore	mainly	comes	from	legacy	short-range	radio	
technologies	such	as	IEEE	802.15.4.	In	the	last	decade,	before	long-range	and	low-power	
LPWAN	technologies	became	reality,	short-range	sensors	mostly	based	on	IEEE	802.15.4	
radios	were	the	«	de	facto	»	standard	for	building	sensing	infrastructures.	IEEE	802.15.4	is	
used	in	various	technologies	as	the	PHY/MAC	layer	as	illustrated	in	Figure	68.	
	

	

Figure	68	–	IEEE	802.15.4	as	PHY/MAC	layer	in	various	short-range	technologies	

802.15.4
(PHY & MAC)

CC2420 (TI)
Xbee (Digi)

MRF24J40MA (Microchip)

ZigBit AT86RF230 (ATMEL)

OSI 3 & 4

OSI 2

OSI 1

duty-cycling

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	76	

IEEE	802.15.4	radios	can	be	added	to	Arduino	boards	(e.g.	with	XBee	modules)	but	there	are	
also	a	large	variety	of	existing	integrated	sensors	with	CC2420	radios	as	shown	in	Figure	69.	
	

	

Figure	69	–	Various	integrated	sensors	with	embedded	IEEE	802.15.5	radios	

Even	if	this	heterogeneity	issue	has	little	importance	in	developing	countries	because	the	
number	legacy	short-range	infrastructures	is	likely	to	be	very	small,	WAZIUP	provides	
support	for	heterogeneous	networking	scenarios	as	shown	in	Figure	70	where	legacy	IEEE	
802.15.4	sensors	can	be	re-used	to	complement	a	long-range	infrastructure.	The	
communication	pattern	must	be	from	sensors	to	gateway	because	the	WAZIUP	IoT	platform	
does	not	provide	communication	between	end-devices	although	this	can	be	done.	
	

	

Figure	70	–	Short-range	(IEEE	802.15.4)	for	legacy	sensors	mixed	with	long-range	LoRa		

MICAz

iMote2

iMote2 with IMB400
multimedia board

TelosB

AdvanticSys CM5000 & CM3000
TelosB-like mote

8MHz Atmega128L
4kB SRAM, 128kB Flash
CC2420 radio

8Mhz MSP430F1611
10K SRAM, 48K flash
CC2420 radio

13-416MHz PXA271 Xscale
Wireless MMX DSP
256kB SRAM, 32MB Flash,
32MB SDRAM
CC2420 radio

Libelium
WaspMote

8MHz Atmega1281
8kB SRAM, 128kB Flash
Xbee radio

Short-range radio

Long-range radio

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	77	

6.2. Taking	into	account	data	from	other	radio	interfaces	

Our	approach	is	illustrated	in	Figure	71	:	for	each	radio	technology	X,	a	USB-serial	bridge	is	
used	as	a	transparent	X	gateway.	Then	a	software	component	block,	implementing	specific	
packet	format	dissector/interpretor	for	technology	X,	will	format	packet	information	into	a	
JSON	record	that	will	be	written	into	a	text	file.	The	text	file	containing	JSON	records	is	
common	to	all	radio	interface	block.	Our	gateway	will	then	periodically	read	new	JSON	
records	from	the	text	file	and	inject	the	payload	into	the	main	incoming	data	parsing	block,	
thus	using	all	the	cloud	facilities	already	defined	for	long-range	IoT	devices.	

	

Figure	71	–	General	approach	for	heterogeneous	networking	

The	shared	text	file	contains	lines	of	JSON	records	as	shown	below.	There	are	2	JSON	
records,	each	record	is	for	one	data	packet	:	

{"^p":"^p1,16,3,0,55,8,-45","^r":"^r802154,0C,3332", \
"^t":"^t2016-10-12T09:00:20.956902","data":"\\!TC/22.5"}

{"^p":"^p1,16,6,0,128,9,-55","^r":"^r802154,0C,3332", \
"^t":"^t2016-10-12T09:01:22.453498","data":"\\!HU/85"}

Each	JSON	record	must	have	at	least	3	mandatory	fields	:	"^p",	"^t"	and	"data".	The	first	2	
fields	have	the	same	meaning	than	previously	explained	:	packet	information	and	timestamp	
information.	Note	that	an	"^r"	field	can	be	specified	to	keep	the	same	formalism	than	with	
the	LoRa	radio	as	shown	in	the	example	(e.g.	"^r":"^r802154,0C,3332")	to	provide	radio	
specific	information.	However	these	information	will	not	be	parsed	by	the	post-processing	
block	as	these	radio	information	are	often	very	specific	to	the	radio	technology.	Actually,	it	is	
possible	to	use	another	field	name	as	this	field	is	only	for	keeping	track	of	what	packet	has	
been	received	on	what	interface.	

By	default,	the	post-processing	block	will	periodically	search	for	the	
«	aux_radio/aux_radio_post.txt	»	file	that	will	contain	the	new	JSON	records.	

2016-11-08 23:13:31.476448
post aux_radio: checking for aux_radio/aux_radio_post.txt
post aux_radio: no aux_radio messages
post aux_radio: list of aux_radio messages
None

radio
bridge

program

stdout

stdin

post
processing

post-processing

Incoming data	
parsing block

Handle
downlink
data

cloud_script_1

user/app-specific

Monitor	
gateway

temperature

LoRaWAN
interoperability

Handle data	
from other

radio	interfaces

stdout

cloud_script_2 cloud_script_n

AES
encryption
decryption

Monitor	

Reads from
radio interface
USB bridge and

writes JSON
record to file

Reads from
radio interface
USB bridge and

writes JSON
record to file

Radio X

Radio Y

Software component X

Software component Y

aux_radio_post.txt

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	78	

When	new	JSON	records	are	created	for	incoming	packets	from	other	radio	interfaces,	the	
post-processing	block	will	read	all	records	from	the	aux_radio/aux_radio_post.txt	file	into	
memory	and	deletes	the	file.	

2016-11-08 23:35:32.808260
post aux_radio: checking for aux_radio/aux_radio_post.txt
post aux_radio: reading aux_radio/aux_radio_post.txt
{u'^p': u'^p1,16,3,0,55,8,-45', u'data': u'\\!TC/22.5', u'^r':
u'^r802154,0C,3332', u'^t': u'^t2016-10-12T09:00:20.956902'}
post aux_radio: list of aux_radio messages
{"^p":"^p1,16,3,0,55,8,-45","^r":"^r802154,0C,3332","^t":"^t2016-10-
12T09:00:20.956902","data":"\\!TC/22.5"}

Then,	when	the	gateway	is	idle	from	processing	LoRa	packets,	it	will	start	processing	pending	
data	packets	from	the	other	radio	interfaces	:	

post aux_radio: process aux_radio message
{"^p":"^p1,16,3,0,55,8,-45","^r":"^r802154,0C,3332","^t":"^t2016-10-
12T09:00:20.956902","data":"\\!TC/22.5"}

post aux_radio: inserting in input buffer
^p1,16,3,0,55,8,-45
^t2016-10-12T09:00:20.956902
\!TC/22.5

2016-11-08T23:36:49.820980
rcv ctrl pkt info (^p): 1,16,3,0,55,8,-45
splitted in: [1, 16, 3, 0, 55, 8, -45]
(dst=1 type=0x10(DATA) src=3 seq=0 len=55 SNR=8 RSSI=-45)
rcv timestamp (^t): 2016-10-12T09:00:20.956902
number of enabled clouds is 1
--> cloud[0]
uploading with python CloudThingSpeak.py
ThingSpeak: uploading
rcv msg to log (\!) on ThingSpeak (default , 4): 22.5
ThingSpeak: will issue curl cmd
curl -s -k -X POST --data field4=22.5 https://api.thingspeak.com/[…]
ThingSpeak: returned code from server is 156
--> cloud end

As	can	be	seen,	when	a	pending	data	packet	is	processed,	the	post-processing	block	shows	
the	entire	JSON	record	(text	in	red).	When	the	output	of	the	post-processing	block	is	logged	
into	a	file	then	one	can	trace	what	packet	has	been	received	on	what	radio	interface	and	
when	it	has	been	processed.	

6.2.1. Use	case	with	IEEE	802.15.4	

In	order	to	receive	IEEE	802.15.4	packets,	we	use	an	USB-serial	bridge	where	an	XBee802	
radio	module	can	be	plugged	in,	see	Figure	72.	With	the	USB-serial	bridge,	an	IEEE	802.15.4	
packet	that	is	received	by	the	radio	module	will	be	written	to	a	serial	port	(e.g.	
/dev/tty/USB0	for	instance).	Our	software	component	for	the	IEEE	802.15.4	USB-serial	
bridge	is	written	in	Python	and	periodically	polls	for	data	on	the	serial	interface.	In	case	of	an	
incoming	packet,	it	will	create	a	JSON	record	with	the	required	field	(e.g.	"^p",	"^t"	and	
"data")	and,	if	necessary,	optional	fields	such	as	"^r":"^r802154,0C,3332"	to	indicate	that	
the	packet	comes	from	an	«	802154	»	radio,	listening	on	channel	0x0C	with	PANID	0x3332.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	79	

	

Figure	72	–	XBee	serial	gateway	

Each	software	component	X	for	a	radio	X	appends	their	JSON	records	into	the	
aux_radio/aux_radio_post.txt	file.	

6.2.2. Generalization	to	other	type	of	interfaces	

Figure	71	showed	the	general	approach	based	on	radio	bridge	and	dedicated	software	
components	blocks.	Therefore	for	a	given	radio	technology,	a	USB-serial	bridge	is	usually	
required.	In	many	cases,	when	a	dedicated	USB	dongle	is	not	available,	it	is	possible	to	
program	a	microcontroller	sensor	node	to	act	as	a	transparent	USB-serial	bridge.	Then,	the	
software	component	has	to	be	written	or	adapted	to	format	incoming	data	into	JSON	
records	as	explained	previously.		

For	widely	used	radio	technologies	such	as	WiFi	or	Bluetooth	where	the	network	interface	
can	be	embedded	in	to	the	gateway	(for	instance	the	Raspberry	3	has	built-in	WiFi	and	
Bluetooth),	the	same	approach	can	be	implemented:	a	software	component	can	be	written	
or	adapted	to	format	incoming	data	on	the	WiFi	or	Bluetooth	interface	into	JSON	records	as	
explained	previously.	In	these	cases,	it	is	most	likely	that	high-level	libraries	(e.g.	Python	
libraryies)	can	be	used	to	handle	all	the	connection	issues	in	order	to	get	the	packet	payload.	

	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	80	

7. TESTS	WITH	LORAWAN	AND	MINIMUM	INTEROPERABILITY	

7.1. LoRaWAN	packet	format	and	requirements	

7.1.1. LoRaWAN	packet	format	

A	brief	description	of	LoRaWAN	was	provided	in	Section	4.3.2.	We	describe	here	more	
details	of	the	LoRaWAN	packet	format	as	it	is	the	core	support	for	a	minimum	
interoperability	level.	Taken	from	the	LoRaWAN	specification	document	[6],	the	LoRaWAN	
packet	format	is	illustrated	in	Figure	73.	

	

Figure	73	–	LoRaWAN	packet	format	

A	LoRaWAN	packet,	as	our	own	LoRa	packet	format	(see	Section	5.3.6)	starts	at	the	
PHYPayload	and	consists	of	MHDR,	FHDR,	DevAddr,	FCtrl,	FCnt,	FOpts,	FPort,	encrypted	
application	payload	and	MIC.	

To	support	LoRaWAN	packet,	it	is	necessary	to	be	able	to	encrypt	the	application	payload	
and	compute	the	MIC	according	to	the	LoRaWAN	specifications.	

7.1.2. LoRaWAN	encryption	

The	LoRaWAN	encryption	procedure	uses	2	keys	:	an	application	key	(AppSKey)	and	a	
network	key	(NetSKey).	Both	are	16-bytes	long.	The	128-bit	AES-CTR	encryption	mode	is	
then	applied	with	the	2	keys	as	illustrated	in	Figure	74	for	the	frame	assembly	process.	

AppSKey	is	used	to	encryt	the	application	payload	and	NetSKey	is	used	to	produce	the	MIC.	
In	both	operations,	FCnt,	which	is	a	counter	that	is	incremented	for	each	packet,	and	

App payload

0..15B

defined by
FCtrl[0..3]

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	81	

Direction,	which	takes	0x00	value	for	uplink	and	0x01	for	downlink,	are	incorporated	into	the	
encryption	process.	

	

Figure	74	–	LoRaWAN	frame	assemby	process	

	

7.2. Setting	up	a	LoRaWAN	gateway	:	the	Multitech	mConduit	

7.2.1. The	Multitech	mConduit	

"MultiConnect	Conduit	from	Multitech	is	a	programmable	gateway	that	uses	an	open	Linux	
development	environment	(mLinux)	to	enable	machine-to-machine	(M2M)	connectivity	using	
various	 wireless	 interfaces.	 It	 also	 provides	 an	 online	 application	 store	 as	 a	 platform	 for	
developers	 to	 provision	 and	 manage	 their	 gateway	 and	 associated	 sensors	 and	 devices.	
Conduit	allows	you	 to	use	either	 IBM’s	Node-RED	drag-and-drop	 interface	or	mLinux	Open	
Embedded/Yocto	to	develop	IoT	applications	for	monitoring	and	controlling	assets.	A	diverse	
range	of	MultiConnect	mCard	accessory	cards	provide	the	local	wired	or	wireless	field	asset	
connectivity	and	plug	directly	into	the	rear	of	the	Conduit	gateway"	.	

The	Multitech	Conduit	is	shown	in	Figure	75.		

"The	MTAC-LoRa	accessory	card	provides	long	range	RF	support	using	Semtech’s	LoRa	radio	
technology.	 The	 Conduit	 gateway	 uses	 this	 accessory	 card	 to	 connect	 MultiTech’s	 mDot	
products	to	the	cloud".		

Our	Conduit	model	is	the	MTCDT-210L-US-EU-GB	mLinux	Programmable	Gateway.	

DevAddr Encrypted Payload MIC(*)

AES128
signature

end-device network
session key NetSKey

FCtrl

Application payload

AES128
encryption

end-device application
session key AppSKey

(*) MIC = Message Integrity Check

FCnt FPort

(FCnt, Direction, payload)
then FCnt++

MHDR

(FCnt, Direction, frame)

1B 4B 1B 2B 1B nB 4B

nBLoRaWAN frame assembly
process

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	82	

	

Figure	75	–	The	Multitech	Conduit	and	some	available	mCards	

The	Conduit	can	be	configured	in	two	ways.	One	is	to	use	the	serial	port	by	connecting	the	
gateway	to	your	computer	with	a	micro-USB-cable	to	the	USB	device	port	and	opening	up	a	
serial	monitor	tool	such	as	Putty.	In	our	case,	we	use	a	second	solution	which	is	to	access	the	
terminal	interface	via	Ethernet.	First,	we	need	to	connect	the	antenna	to	the	MTAC-LoRa	
module,	then	the	Ethernet	cable	and	finally	the	power	supply.	The	gateway	shoud	now	boot	
up. By	default	the	Conduit	has	an	hardcoded	IP	address	:	192.168.2.1	(DHCP	is	disabled).	
On	your	computer,	configure	the	network	interface	that	is	connected	to	the	Conduit	to	be	a	
static	IP	address	within	192.168.2.2 - 192.168.2.254.	Next	open	an	SSH	connection	
using	the	default	factory	credential:	user	is	root	,	password	is	root.		

On	Linux,	issue	this	command	in	your	computer’s	terminal	:		

ssh root@192.168.2.1

	
When	prompted,	enter	the	default	password.	On	Windows,	install	Putty	and	open	a	new	
session	SSH	on	port	22	using	the	above	defaults.	

If	the	login	was	successful	the	Conduit’s	terminal	prompt	should	appear:		

root@mtcdt:~#

Upgrading	LoRa	Server	&	Packet	Forwarder	

1. Download	from	http://www.multitech.net/developer/downloads/ the	latest	Lora-
Packet-forwarder	and	Lora-Network-Server	packages	from	the	Multitech.	The	files	
should	be	similar	to	this:	

• lora-packet-forwarder_1.4.1-r9.1_arm926ejste.ipk	

• lora-network-server_1.0.8-r0.0_mlinux.ipk	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	83	

2. Copy	both	packages	to	the	Conduit	using	SCP	or	an	alternative	(flash	drive	for	
example),	and	install	them	using	the	opkg	package	manager	:	
	
$ opkg install lora-packet-forwarder_*.ipk
$ opkg install lora-network-server_*.ipk	

Configuring	the	packet	forwarder	for	TheThingsNetwork		

1. Issue	these	commands	on	the	Conduit	:	
	
$	mkdir /var/config/lora
$	cp /opt/lora/lora-network-server.conf.sample /var/config/lora/lora-
network-server.conf
	

2. Edit	/var/config/lora/lora-network-server.conf	and	modify	these	settings	as	needed	
(use	vi	or	nano).	

Field MTAC-LORA-915 (NA) MTAC-LORA-868 (EU)

lora["frequencyBand"]: “915″ “868″

lora["channelPlan"]: “US915″ or “AU915″ “EU868″

lora["frequencySubBand"]: (integer: 1 to 8) Not applicable

lora["frequencyEU"]: Not applicable default: 869500000
range: [863500000 - 867500000]
and [869100000 - 869500000]

network["public"]: true

	

3. Restart	the	network	server.	This	will	generate	a	configuration	file	for	the	packet	
forwarder.	
	
$ /etc/init.d/lora-network-server	restart
	

4. Copy	the	generated	packet	forwarder	configuration	to	the	config	partition	
	
$	cp /var/run/lora/1/global_conf.json
/var/config/lora/global_conf.json
	

5. Edit	/var/config/lora/global-conf.json	and	modify	these	settings.Enter	the	server	
address	depending	on	your	region	:	
	
router.eu.staging.thethings.network		#	EU	433	and	EU	863-870	
router.us.staging.thethings.network		#	US	902-928	
router.cn.staging.thethings.network		#	China	470-510	and	779-787	
router.au.staging.thethings.network		#	Australia	915-928	MHz	
	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	84	

"gateway_conf" :
{
 "gateway_ID" : "00000008004A0410",
 "forward_crc_disabled" : true,
 "forward_crc_error" : false,
 "forward_crc_valid" : true,
 "keepalive_interval" : 12,
 "push_timeout_ms" : 120,
 "serv_port_down" : 1700,
 "serv_port_up" : 1700,
 "server_address" : "router.eu.thethings.network",
 "stat_interval" : 20,
 "synch_word" : 52
}

	

6. Edit	/etc/init.d/lora-network-sever	as	follows	:	
	
Comment	out	the	lora	network	server	start	code	(line	57	to	61)	

start network server

start-stop-daemon --start --background --make-pidfile \

--pidfile $net_server_pidfile --exec $net_server -- \

-c $conf_file --lora-eui $lora_eui --lora-path $run_dir --db $conf_db \

--noconsole -l $net_server_log

#sleep 1

On	line	65,	change	the	-c	$run_dir	to	-c		$conf_dir	

start packet forwarder

start-stop-daemon --start --background --make-pidfile \

 --pidfile $pkt_fwd_pidfile --exec $pkt_fwd -- \

 -c $conf_dir -l $pkt_fwd_log

echo "OK"

Comment	out	the	Lora	network	server	stop	code	(line	71)	

#start-stop-daemon --stop --quiet --oknodo --pidfile $net_server_pidfile --retry 15

 start-stop-daemon --stop --quiet --oknodo --pidfile $pkt_fwd_pidfile --retry 5

7. Restart	the	packet	forwarder	
	
$ /etc/init.d/lora-network-server	restart	

	
	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	85	

8. For	debbugging,	you	can	view	the	packet	forwarder	log	with	this	command:	
	
$	tail -f /var/log/lora-pkt-fwd.log	

	

setup_sx125x:678: Note: SX125x #0 clock output enabled

setup_sx125x:721: Note: SX125x #0 PLL start (attempt 1)

setup_sx125x:673: Note: SX125x #1 version register returned 0x21

setup_sx125x:678: Note: SX125x #1 clock output enabled

setup_sx125x:721: Note: SX125x #1 PLL start (attempt 1)

lgw_start:1120: Note: calibration started (time: 3000 ms)

lgw_start:1141: Note: calibration finished (status = 191)

Info: Initialising AGC firmware...

Info: loading custom TX gain table

Info: putting back original RADIO_SELECT value

*** Basic Packet Forwarder for Lora Gateway ***

Version: 1.4.1

*** Lora concentrator HAL library version info ***

Version: 1.7.0; Options: ftdi sx1301 sx1257 full mtac-lora private;

INFO: Little endian host

INFO: found global configuration file /var/config/lora/global_conf.json, parsing it

INFO: /var/config/lora/global_conf.json does contain a JSON object named

SX1301_conf, parsing SX1301 parameters

INFO: radio 0 enabled, center frequency 867500000

INFO: radio 1 enabled, center frequency 868500000

INFO: Lora multi-SF channel 0> radio 1, IF -400000 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 1> radio 1, IF -200000 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 2> radio 1, IF 0 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 3> radio 0, IF -400000 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 4> radio 0, IF -200000 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 5> radio 0, IF 0 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 6> radio 0, IF 200000 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora multi-SF channel 7> radio 0, IF 400000 Hz, 125 kHz bw, SF 7 to 12

INFO: Lora std channel> radio 1, IF -200000 Hz, 250000 Hz bw, SF 7

INFO: FSK channel> radio 1, IF 300000 Hz, 100000 Hz bw, 50000 bps datarate

INFO: /var/config/lora/global_conf.json does contain a JSON object named

gateway_conf, parsing gateway parameters

INFO: gateway MAC address is configured to 00000008004A0410

INFO: server hostname or IP address is configured to "router.eu.thethings.network"

INFO: upstream port is configured to "1700"

INFO: downstream port is configured to "1700"

INFO: synch word is configured to 34

INFO: downstream keep-alive interval is configured to 12 seconds

INFO: statistics display interval is configured to 20 seconds

INFO: upstream PUSH_DATA time-out is configured to 120 ms

INFO: packets received with a valid CRC will be forwarded

INFO: packets received with a CRC error will NOT be forwarded

INFO: packets received with no CRC will be forwarded

INFO: found local configuration file /var/config/lora/local_conf.json, parsing it

INFO: redefined parameters will overwrite global parameters

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	86	

INFO: /var/config/lora/local_conf.json does not contain a JSON object named

SX1301_conf

INFO: /var/config/lora/local_conf.json does contain a JSON object named

gateway_conf, parsing gateway parameters

INFO: gateway MAC address is configured to 00000008004A0410

INFO: packets received with a valid CRC will be forwarded

INFO: packets received with a CRC error will NOT be forwarded

INFO: packets received with no CRC will be forwarded

INFO: [main] concentrator started, packet can now be received

	

INFO: Start of downstream thread

INFO: [down] PULL_ACK received in 29 ms

INFO: [down] PULL_ACK received in 28 ms

2016-10-13 22:34:30 GMT #####

[UPSTREAM] ###

RF packets received by concentrator: 0

CRC_OK: 0.00%, CRC_FAIL: 0.00%, NO_CRC: 0.00%

RF packets forwarded: 0 (0 bytes)

PUSH_DATA datagrams sent: 0 (0 bytes)

PUSH_DATA acknowledged: 0.00%

[DOWNSTREAM] ###

PULL_DATA sent: 2 (100.00% acknowledged)

PULL_RESP(onse) datagrams received: 0 (0 bytes)

RF packets sent to concentrator: 0 (0 bytes)

TX errors: 0

	

For	Upstream	:	

• RF	packets	received	by	concentrator	:	packets	are	stored	in	concentrator)	

• RF	packets	forwarded	:	packets	are	forwarded	to	The	Things	Network	server	

• PUSH_DATA	acknowledged	:	forwarding	acknowledgement	

ü 0%	:	no	active	connection	to	TTN	backend	

ü 100%	:	active	connection	to	TTN	backend	

For	Downstream	:	

• PULL_DATA	sent	:	requesting	available	downstream	packets	

ü 0%	:	no	active	connection	to	TTN	backend	

ü 100%	:	active	connection	to	TTN	backend	

• PULL_RESP(onse)	datagrams	received	:	downstream	packets	

• RF	packets	sent	to	concentrator	:	concentrator	sends	downstream	packets	

The	gateway	is	now	operational.	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	87	

Gateway	registration	on	The	Things	Network	(see	Figure	76)	
	

	

Figure	76	–	Gateway	settings

7.2.2. The	mDot	

"The	MultiConnect	mDot	 is	a	secure,	programmable,	 long-range	and	 low-power	RF	module	
that	provides	data	connectivity	to	sensors,	industrial	equipment,	and	remote	appliances"	(see	
Figure	77).	

	

Figure	77	–	MultiConnect	mDot	

Before	our	mDot	device	can	communicate	via	The	Things	Network	we	need	to	register	it	
with	an	application.	Figure	78	depicts	these	settings.	We	use	ABP	activation	method	that	is	
useful	for	workshops:	no	waiting	for	a	downlink	window	to	become	available	to	confirm	the	
activation.	In	production,	the	default	Over	The	Air	Activation	(OTTA)	is	recommended.	This	is	
more	reliable	because	the	activation	will	be	confirmed	and	more	secure	because	the	session	
keys	will	be	negotiated	with	every	activation.		
	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	88	

	

Figure	78	–	Device	settings	on	TTN	

Setting	up	the	mDot	to	join	the	Conduit	LoRa	network	

Setting	up	the	mDot	to	join	the	Conduit	LoRa	network,	we	need	to	connect	the	mDot	to	our	
computer	using	Serial	to	USB	connector	and	with	an	hyper	terminal	to	send	AT	commands.	
These	AT	commands	are	as	follows	:	

• Manual join mode
AT+NJM=0

• Public network mode
AT+PN=1

• Set Network Session Key
AT+NSK=8017FE3C648E370BBE6AB699303E0026

• Set Data Session Key
AT+DSK=A4C451698B489C75BEF8B2EE6D1A011F

• Set Network ID
AT+NI=0,70B3D57EF0001DCB

• Set Network Address
AT+NA=26011BC0

• Save settings
AT&W

• Restart
ATZ

For	checking,	we	can	display	current	settings	and	status:		

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	89	

AT&V

Device ID: 00:80:00:00:00:00:a5:8f
Frequency Band: FB_868
Frequency Sub Band: 0
Public Network: on
Start Up Mode: COMMAND
Network Address: 26011bc0
Network ID: 70:b3:d5:7e:f0:00:1d:cb
Network ID Passphrase:
Network Key:
Network Key Passphrase:
Network Session Key: 80.17.fe.3c.64.8e.37.0b.be.6a.b6.99.30.3e.00.26
Data Session Key: a4.c4.51.69.8b.48.9c.75.be.f8.b2.ee.6d.1a.01.1f
Network Join Mode: MANUAL
Network Join Retries: 2
Join Byte Order: LSB
Link Check Threshold: off
Link Check Count: off
Error Correction: 1 bytes
ACK Retries: off
Encryption: on
CRC: on
Adaptive Data Rate: off
Command Echo: on
Verbose Response: off
Tx Frequency: 0
Tx Data Rate: SF_9
Tx Power: 11
Tx Wait: on
Tx Inverted Signal: off
Rx Frequency: 869525000
Rx Data Rate: SF_9
Rx Inverted Signal: on
Rx Output Style: HEXADECIMAL
Debug Baud Rate: 115200
Serial Baud Rate: 115200
Wake Mode: INTERVAL
Wake Interval: 10 s
Wake Delay: 100 ms
Wake Timeout: 20 ms
Log Level: 0

Now,	we	can	join	the	Conduit	LoRa	network	by	sending	a	message	without	requesting	an	
ACK:	

AT+ACK=0
AT+SEND=Hello from Dakar

Check	if	the	Conduit	is	receiving	packages	

We	can	run	

tail -f /var/log/lora-pkt-fwd.log

on	the	Conduit	terminal	session	as	described	above	and	view	the	log.	Here	is	a	successful	
result	:

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	90	

2016-12-30 16:39:48 GMT #####
[UPSTREAM] ###
RF packets received by concentrator: 1
CRC_OK: 100.00%, CRC_FAIL: 0.00%, NO_CRC: 0.00%
RF packets forwarded: 1 (29 bytes)
PUSH_DATA datagrams sent: 1 (252 bytes)
PUSH_DATA acknowledged: 100.00%
[DOWNSTREAM] ###
PULL_DATA sent: 1 (100.00% acknowledged)
PULL_RESP(onse) datagrams received: 0 (0 bytes)
RF packets sent to concentrator: 0 (0 bytes)
TX errors: 0
END #####
INFO: [down] PULL_ACK received in 28 ms
INFO: [down] PULL_ACK received in 28 ms

	

Visualize	packages	on	The	Things	Network	

	

	

Figure	79	–	Receiving	data	on	TTN	

	

Sources	:	www.multitech.net,		www.thethingsnetwork.org	

	 	

The	Conduit’s	ID	

Encoded	Payload	(base	64)	

Decoded	Payload		

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	91	

7.3. Providing	a	simple	LoRaWAN	interoperability	level	

The	LoRaWAN	interoperability	level	that	the	WAZIUP	platform	proposes	is	as	follows:	

• Uplink	message	only:	a	low-cost	IoT	device	can	send	LoRaWAN-formatted	packet	that	
can	be	received	both	by	WAZIUP	low-cost	and	commercial	LoRaWAN	gateway;	

• The	WAZIUP	low-cost	gateway	can	received	and	process	LoRaWAN	packets	from	a	
LoRaWAN	device	(either	with	a	LoRaWAN	radio	module,	or	using	a	LoRaWAN	
protocol	stack	such	as	several	“IBM	LoRaWAN-in-C”	[12]	(LMIC)	ports	for	Arduino	
boards;	local	decryption	can	be	enabled	if	AppSKey	and	NetSKey	are	both	known	by	
the	gateway;	

• For	the	IoT	device,	the	knowledge	of	AppSKey	and	NetSKey	are	realized	following	the	
Activation	By	Personalization	mechanism	(ABP)	which	means	that	AppSKey	and	
NetSKey	are	stored	initially	in	the	IoT	device.	

7.3.1. Low-cost	IoT	device	

At	the	low-cost	IoT	device,	both	AppSKey	and	NetSkey	are	stored	as	follows	:	

 unsigned char AppSkey[16] = {
 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C
 };

 unsigned char MwkSkey[16] = {
 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C
 };

Here	we	use	the	standard	keys	for	test	purposes.	Then,	a	4-byte	device	address	is	defined,	
possibly	using	the	1-byte	address	used	by	our	long-range	communication	library	(see	
Sections	5.3.6	and	5.4.4).	In	the	following	examples,	we	used:	

 unsigned char DevAddr[4] = {
 0x00, 0x00, 0x00, 0x06
 };

LoRaWAN	AES-CTR	encryption	functionalities	are	provided	by	the	great	light-weight	library	
written	by	Gerben	den	Hartog,	initially	for	the	Ideetron	Nexus	board,	but	further	used	in	
several	LMIC	ports	for	Arduino	boards	because	of	its	simplicity,	efficiency	and	small	memory	
footprint.	

As	indicated	previously,	Arduino_LoRa_temp	is	a	template	with	AES	encryption	and	the	
possibility	to	send	LoRaWAN	packet.	Assuming	that	the	payload	is	\!#3#TC/22.50,	we	show	
below	an	example	output	of	an	IoT	device	running	the	Arduino_LoRa_temp	program:	

LoRa temperature sensor
Arduino Pro Mini detected
SX1276 detected, starting
SX1276 LF/HF calibration
...
Get back previous sx1272 config
Using packet sequence number of 100
Setting Mode: state 0
Setting Channel: state 0
Setting Power: state 0

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	92	

Setting node addr: state 0
SX1272 successfully configured
Reading 70
(Temp is 22.55
Sending \!#3#TC/22.50
Real payload size is 13
\!#3#TC/22.50
plain payload hex
5C 21 23 33 23 54 43 2F 32 32 2E 35 30
Encrypting
encrypted payload
4F 29 E7 49 77 A1 C2 E7 81 E6 16 A6 68
calculate MIC with NwkSKey
transmitted LoRaWAN-like packet:
MHDR[1] | DevAddr[4] | FCtrl[1] | FCnt[2] | FPort[1] | EncryptedPayload | MIC[4]
40 06 00 00 00 00 00 00 01 4F 29 E7 49 77 A1 C2 E7 81 E6 16 A6 68 FD 75 68 74
end-device uses native LoRaWAN packet format
--> CAD duration 547
OK1
--> waiting for 1 CAD = 62
--> CAD duration 547
OK2
--> RSSI -126
LoRa pkt size 26
LoRa pkt seq 100
LoRa Sent in 1733
LoRa Sent w/CAD in 9091
Packet sent, state 0

7.3.2. Low-cost	gateway	

The	post-processing	block	of	our	low-cost	gateway	can	receive	LoRaWAN	packet	and	can	
either	locally	decrypt	the	packet	if	both	AppSKey	and	NetSKey	are	available	or	push	the	
encrypted	payload	into	the	cloud.	The	LoRaWAN	decryption	capabilities	are	provided	by	the	
LoRaWAN	python	package	from	https://github.com/jeroennijhof/LoRaWAN.	We	wrapped	
the	LoRaWAN	support	using	the	LoRaWAN	encryption/decryption	python	package	into	a	
loraWAN.py	python	script.	

In	the	following	example,	we	show	our	low-cost	gateway	locally	decrypting	the	LoRaWAN	
packet	and	pushing	data	to	the	ThingSpeak	cloud	as	explained	in	Section	5.5.4.		

Parsing cloud declarations
[u'python CloudThingSpeak.py']
Parsed all cloud declarations
post_processing_gw.py got cloud list:
[u'python CloudThingSpeak.py']
raw output from gateway. post_processing_gw will handle packet format
enable local AES decryption

Current working directory: /home/pi/lora_gateway
SX1276 detected, starting.
SX1276 LF/HF calibration
...
**********Power ON: state 0
Default sync word: 0x12
LoRa mode 1
Setting mode: state 0
Channel CH_10_868: state 0
Set LoRa Power to M
Power: state 0
Get Preamble Length: state 0
Preamble Length: 8
LoRa addr 1: state 0
Raw format, not assuming any header in reception
SX1272/76 configured as LR-BS. Waiting RF input for transparent RF-serial bridge

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	93	

--- rxlora. dst=0 type=0x00 src=0 seq=0 len=26 SNR=-16 RSSIpkt=-110 BW=125
CR=4/5 SF=12
2016-10-20T12:34:22.420292
rcv ctrl pkt info (^p): 0,0,0,0,26,-16,-110
splitted in: [0, 0, 0, 0, 26, -16, -110]
rawFormat(len=26 SNR=-16 RSSI=-110)
rcv ctrl radio info (^r): 125,5,12
splitted in: [125, 5, 12]
(BW=125 CR=5 SF=12)
rcv timestamp (^t): 2016-10-20T12:09:25.281

got first framing byte
--> got data prefix
raw format from gateway
LoRaWAN?
loraWAN: valid MIC
loraWAN: plain payload is \!#3#TC/22.50
plain payload is : \!#3#TC/22.50
number of enabled clouds is 1
--> cloud[0]
uploading with python CloudThingSpeak.py
ThingSpeak: uploading
rcv msg to log (\!) on ThingSpeak (default , 3): 22.50
ThingSpeak: will issue curl cmd
curl -s -k -X POST --data field3=22.50&field7=0 https://api.thingspeak.com/[…]
ThingSpeak: returned code from server is 210
--> cloud end

When	the	gateway	does	not	know	AppSKey	nor	NetSkey	as	it	is	the	case	when	several	
organizations	share	the	same	gateway,	the	following	example	shows	how	the	gateway	can	
push	the	encrypted	payload	into	the	cloud	where	decryption	will	be	performed	in	a	later	
step.	The	example	uses	FireBase	to	store	in	JSON	format	the	LoRaWAN	packet.	Encrypted	
payload		and	the	entire	LoRaWAN	frame	are	stored	in	Base64	format.	

Parsing cloud declarations
[u'python CloudThingSpeak.py']
Parsed all cloud declarations
post_processing_gw.py got cloud list:
[u'python CloudThingSpeak.py']
Parsing cloud declarations
[u'python CloudFireBaseLWAES.py']
Parsed all cloud declarations
post_processing_gw.py got LoRaWAN encrypted cloud list:
[u'python CloudFireBaseLWAES.py']
raw output from gateway. post_processing_gw will handle packet format

Current working directory: /home/pi/lora_gateway
2016-10-26T22:14:12.985467
rcv ctrl pkt info (^p): 0,0,0,0,26,8,-45
splitted in: [0, 0, 0, 0, 26, 8, -45]
rawFormat(len=26 SNR=8 RSSI=-45)
rcv ctrl radio info (^r): 125,5,12
splitted in: [125, 5, 12]
(BW=125 CR=5 SF=12)
got first framing byte
--> got data prefix
raw format from gateway
LoRaWAN?
--> DATA encrypted: local aes not activated
--> FYI base64 of LoRaWAN frame w/MIC: QAYAAAAAAAABTynnSXehwueB5hamaP11aHQ=
--> number of enabled clouds is 1
--> LoRaWAN encrypted cloud[0]
uploading with python CloudFireBaseLWAES.py
FireBase: uploading
Firebase: upload success
--> LoRaWAN encrypted cloud end

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	94	

	

On	FireBase,	the	following	record	is	stored:	

 sensor0x00000006
 msg0x0000
 FCnt: "0x0000"
 FPort: "0x01"
 MIC: "0xfd756874"
 cr: 5
 data_b64: "TynnSXehwueB5hamaA=="
 datarate: "SF12BW125"
 devAddr: "0x00000006"
 frame_b64: "QAYAAAAAAAABTynnSXehwueB5hamaP11aHQ="
 gateway_eui: "00000027EB795C47"
 len: 26
 pdata:"0,0,0,0,26,8,-45"
 ptype: "0x40"
 ptypestr: "unconfirmed data up"
 rdata:"125,5,12"
 rssi: -45
 snr: 8
 time: "2016-10-26T20:14:13.110056"

The	previous	loraWAN.py	script	can	be	used	on	a	computer	to	decrypt	the	encrypted	
payload.		

> python loraWAN.py "QAYAAAAAAAABTynnSXehwueB5hamaP11aHQ=" "1,20,6,0,26,8,-45"
"125,5,12"
?loraWAN: valid MIC
?loraWAN: plain payload is \!#3#TC/22.50
?plain payload is : \!#3#TC/22.50
^p1,16,6,0,13,8,-45
^r125,5,12
??\!#3#TC/22.50

Note	the	2	'?'	in	front	of	the	plain	data.	These	are	normally	the	data	prefix	\xFF\xFE	inserted	
by	the	lora_gateway	program	and	emulated	by	loraWAN.py.	The	'?'	in	front	of	the	other	
lines	indicate	to	a	post-processing	block	that	these	lines	should	be	ignored.	

Once	the	application	has	the	plain	payload,	it	can	further	push	the	plain	data	into	other	IoT	
clouds.	For	instance,	a	final	app	running	on	a	Linux	machine	can	simply	use	our	post-
processing	block	written	in	Python	(post_processing_gw.py)	with	the	plain	data	to	upload	
data	to	IoT	clouds	just	as	a	gateway	with	NetSKey	and	AppSKey	would	do.	

> python loraWAN.py "QAYAAAAAAAABTynnSXehwueB5hamaP11aHQ=" "1,20,6,0,26,8,-45"
"125,5,12" | python post_processing_gw.py
Parsing cloud declarations
[u'python CloudThingSpeak.py']
Parsed all cloud declarations
post_processing_gw.py got cloud list:
[u'python CloudThingSpeak.py']
Parsing cloud declarations
[u'python CloudFireBaseLWAES.py']
Parsed all cloud declarations
post_processing_gw.py got LoRaWAN encrypted cloud list:
[u'python CloudFireBaseLWAES.py']

Current working directory: /home/pi/my_final_app
2016-10-27T22:18:45.079058
rcv ctrl pkt info (^p): 1,16,6,0,13,8,-45
splitted in: [1, 16, 6, 0, 13, 8, -45]

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	95	

(dst=1 type=0x10(DATA) src=6 seq=0 len=13 SNR=8 RSSI=-45)
rcv ctrl radio info (^r): 125,5,12
splitted in: [125, 5, 12]
(BW=125 CR=5 SF=12)
got first framing byte
--> got data prefix
number of enabled clouds is 1
--> cloud[0]
uploading with python CloudThingSpeak.py
ThingSpeak: uploading
rcv msg to log (\!) on ThingSpeak (default , 3): 22.50
ThingSpeak: will issue curl cmd
curl -s -k -X POST --data field3=22.50&field7=0 https://api.thingspeak.com/ […]
ThingSpeak: returned code from server is 218
--> cloud end

If	you	use	this	feature	where	post_processing_gw.py	takes	its	input	from	loraWAN.py,	you	
have	to	pass	at	least	2	arguments:	the	base64-encoded	string	and	the	packet	info	string	(e.g.	
^p	string).	loraWAN.py	set	the	packet	type	and	the	data	length	to	the	appropriate	value	for	
post_processing_gw.py.	post_processing_gw.py	can	use	exactely	the	same	cloud	
configuration	than	a	normal	gateway	would	have.	

7.3.3. From	LoRaWAN	mDot	to	low-cost	gateway	

As	described	previously,	the	mDot	is	a	LoRaWAN	radio	module	from	MultiTech.	The	mdot	
will	be	configured	by	ABP,	with	the	AppSKey	and	NetSKey	matching	those	declared	in	
loraWAN.py.	The	frequency	will	be	868.1MHz	and	the	LoRa	parameters	are	:	bw=125kHz,	
cr=4/5	and	sf=12	which	correspond	to	our	LoRa	mode	1.	

 # Data session encryption key (16 bytes)
 AT+DSK=2B7E151628AED2A6ABF7158809CF4F3C
 OK

 # Network session encryption key (16 bytes)
 AT+NSK=2B7E151628AED2A6ABF7158809CF4F3C
 OK

Then,	sending	with	the	mDot	:	

 AT+SEND=HelloWorld
 OK

 AT+SEND=HelloWorld_1
 OK

The	low-cost	gateway	is	started	as	follows,	note	the	sync	word	of	0x34	to	match	the	one	of	
LoRaWAN.	

> sudo ./lora_gateway --mode 1 --raw --sw 34 --freq 868.1 | python
post_processing_gw.py --raw –aes

Parsing cloud declarations
Parsed all cloud declarations
post_processing_gw.py got cloud list:
[]
raw output from gateway. post_processing_gw will handle packet format
enable local AES decryption

Current working directory: /home/pi/lora_gateway
SX1276 detected, starting.
SX1276 LF/HF calibration
...
**********Power ON: state 0

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	96	

Default sync word: 0x12
Set sync word to 0x34
LoRa sync word: state 0
LoRa mode 1
Setting mode: state 0
Frequency 868.100000: state 0
Set LoRa Power to M
Power: state 0
Get Preamble Length: state 0
Preamble Length: 8
LoRa addr 1: state 0
Raw format, not assuming any header in reception
SX1272/76 configured as LR-BS. Waiting RF input for transparent RF-serial bridge

Here	is	the	reception	on	our	low-cost	gateway	:	

...
--- rxlora. dst=0 type=0x00 src=0 seq=0 len=23 SNR=7 RSSIpkt=-68 BW=125
CR=4/5 SF=12
2016-10-24T11:13:51.119549
rcv ctrl pkt info (^p): 0,0,0,0,23,7,-68
splitted in: [0, 0, 0, 0, 23, 7, -68]
rawFormat(len=23 SNR=7 RSSI=-68)
rcv ctrl radio info (^r): 125,5,12
splitted in: [125, 5, 12]
(BW=125 CR=5 SF=12)
rcv timestamp (^t): 2016-10-24T11:13:51.118

got first framing byte
--> got data prefix
raw format from gateway
LoRaWAN?
loraWAN: valid MIC
loraWAN: plain payload is HelloWorld
plain payload is : HelloWorld
HelloWorld
--- rxlora. dst=0 type=0x00 src=0 seq=0 len=25 SNR=6 RSSIpkt=-80 BW=125
CR=4/5 SF=12
2016-10-24T11:30:34.333976
rcv ctrl pkt info (^p): 0,0,0,0,25,6,-80
splitted in: [0, 0, 0, 0, 25, 6, -80]
rawFormat(len=25 SNR=6 RSSI=-80)
rcv ctrl radio info (^r): 125,5,12
splitted in: [125, 5, 12]
(BW=125 CR=5 SF=12)
rcv timestamp (^t): 2016-10-24T11:30:34.333

got first framing byte
--> got data prefix
raw format from gateway
LoRaWAN?
loraWAN: valid MIC
loraWAN: plain payload is HelloWorld_1
plain payload is : HelloWorld_1
HelloWorld_1

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	97	

8. ANNEXES	
8.1. Our	LoRa	FAQs	

[Doc]	Low-cost	LoRa	IoT	devices	and	gateway	FAQ	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/FAQ.pdf	

	

	 	

Author : Congduc Pham, University of Pau, France page
Last update : 24.11.2016

1"

EU"H2020"grant"agreement"number"687607"

Low-cost LoRa IoT devices and gateway FAQ

1) What is Internet-of-Thing (IoT)?

From IERC (European Research Cluster on the Internet of Thing)

The IERC definition states that IoT is "A dynamic global network infrastructure with
self-configuring capabilities based on standard and interoperable communication
protocols where physical and virtual “things” have identities, physical attributes, and
virtual personalities and use intelligent interfaces, and are seamlessly integrated
into the information network."

From http://www.gartner.com/it-glossary/internet-of-things/

"The Internet of Things (IoT) is the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal
states or the external environment."

From http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

"The Internet of Things (IoT) is a system of interrelated computing devices,
mechanical and digital machines, objects, animals or people that are provided with
unique identifiers and the ability to transfer data over a network without requiring
human-to-human or human-to-computer interaction."

2) What is WAZIUP?

The EU H2020 WAZIUP project, namely the Open Innovation Platform for IoT-Big
Data in Sub-Saharan Africa is a collaborative research project using cutting edge
technology applying IoT and Big Data to improve the working conditions in the rural
ecosystem of Sub-Saharan Africa. First, WAZIUP operates by involving farmers and
breeders in order to define the platform specifications in focused validation cases.
Second, while tackling challenges which are specific to the rural ecosystem, it also
engages the flourishing ICT ecosystem in those countries by fostering new tools
and good practices, entrepreneurship and start-ups. Aimed at boosting the ICT
sector, WAZIUP proposes solutions aiming at long term sustainability.

WAZIUP will deliver a communication and big data application platform and
generate locally the know how by training by use case and examples. The use of
standards will help to create an interoperable platform, fully open source, oriented
to radically new paradigms for innovative application/services delivery. WAZIUP is
driven by the following visions:

1. Empower the African Rural Economy. Develop new technological enablers to
empower the African rural economy now threatened by the concurrent action
of rapid urbanization and of climate change. WAZIUP technologies can
support the necessary services and infrastructures to launch agriculture and
breeding on a new scale;

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	98	

8.2. Low-cost	LoRa	IoT	platform	part	list	

[Doc]	Low-cost	LoRa	IoT	platform	part	list	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/low-cost-iot-hardware-parts.pdf	

	

	 	

Low-cost LoRa IoT platform part list!
last update November 6th, 2016

TO BUILD THE GATEWAY

 Raspberry: take either the RPI2 or RPI3 (RPI3 better for WiFi and
Bluetooth)

You also need an 8GB SD card

RPI3 has built-in WiFi and Bluetooth 4.0,

if you get or already have the RPI2 and want WiFi and Bluetooth, get
dongles, but it is not mandatory. Dongles that have been tested
successfully are:

Bluetooth 4.0: CSR
dongle or Konig dongle !WiFi: TP-LINK TL-WL725N!

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	99	

8.3. Tutorials	materials	

[Slides]	"Tutorial	on	hardware	&	software	for	low-cost	long-range	IoT"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/tutorial-SWHW-LoRa-WAZIUP.pdf		

[Slides]	"Low-cost	LoRa	IoT	device:	a	step-by-step	tutorial"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-step-by-step.pdf		

[Slides]	"Building	IoT	device	for	outdoor	usage:	a	step-by-step	tutorial"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-outdoor-step-by-
step.pdf		

[Slides]	"Low-cost	LoRa	IoT	device:	supported	physical	sensors"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-supported-sensors.pdf		

[Slides]	"Low-cost	LoRa	gateway:	a	step-by-step	tutorial"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-GW-step-by-step.pdf		

[Slides]	"Low-cost	LoRa	IoT:	using	the	WAZIUP	demo	kit"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-using-demo-kit.pdf	

[Slides]	"Low-cost	LoRa	IoT	antenna	tutorial	for	gateway"	
Latest	version	can	be	downloaded	from:	
https://github.com/CongducPham/tutorials/blob/master/Low-cost-LoRa-IoT-antennaCable.pdf		

[Video]	Build	your	low-cost,	long-range	IoT	device	with	WAZIUP	
https://www.youtube.com/watch?v=YsKbJeeav_M		

[Video]	Build	your	low-cost	LoRa	gateway	with	WAZIUP	
https://www.youtube.com/watch?v=peHkDhiH3lE		

	
32!

Tutorials/resources!

Author : Congduc Pham, University of Pau, France page
Last update : 07.09.2016

1"

EU"H2020"grant"agreement"number"687607"

Low-cost LoRa IoT devices and gateway FAQ

1) What is Internet-of-Thing (IoT)?

From IERC (European Research Cluster on the Internet of Thing)

The IERC definition states that IoT is "A dynamic global network infrastructure with
self-configuring capabilities based on standard and interoperable communication
protocols where physical and virtual “things” have identities, physical attributes, and
virtual personalities and use intelligent interfaces, and are seamlessly integrated
into the information network."

From http://www.gartner.com/it-glossary/internet-of-things/

"The Internet of Things (IoT) is the network of physical objects that contain
embedded technology to communicate and sense or interact with their internal
states or the external environment."

From http://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

"The Internet of Things (IoT) is a system of interrelated computing devices,
mechanical and digital machines, objects, animals or people that are provided with
unique identifiers and the ability to transfer data over a network without requiring
human-to-human or human-to-computer interaction."

2) What is WAZIUP?

The EU H2020 WAZIUP project, namely the Open Innovation Platform for IoT-Big
Data in Sub-Saharan Africa is a collaborative research project using cutting edge
technology applying IoT and Big Data to improve the working conditions in the rural
ecosystem of Sub-Saharan Africa. First, WAZIUP operates by involving farmers and
breeders in order to define the platform specifications in focused validation cases.
Second, while tackling challenges which are specific to the rural ecosystem, it also
engages the flourishing ICT ecosystem in those countries by fostering new tools
and good practices, entrepreneurship and start-ups. Aimed at boosting the ICT
sector, WAZIUP proposes solutions aiming at long term sustainability.

WAZIUP will deliver a communication and big data application platform and
generate locally the know how by training by use case and examples. The use of
standards will help to create an interoperable platform, fully open source, oriented
to radically new paradigms for innovative application/services delivery. WAZIUP is
driven by the following visions:

1. Empower the African Rural Economy. Develop new technological enablers to
empower the African rural economy now threatened by the concurrent action
of rapid urbanization and of climate change. WAZIUP technologies can
support the necessary services and infrastructures to launch agriculture and
breeding on a new scale;

Low-cost LoRa IoT device:!
a step-by-step tutorial!

Prof. Congduc Pham !
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

Building an IoT device for
outdoor usage:!

a step-by-step tutorial!

Prof. Congduc Pham !
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

Low-cost LoRa IoT device: !
supported physical sensors !

Prof. Congduc Pham!
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

Low-cost LoRa IoT:!
using the WAZIUP demo kit!

Prof. Congduc Pham!
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

Low-cost LoRa gateway: !
a step-by-step tutorial!

Prof. Congduc Pham !
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

Tutorial on hardware &
software for low-cost long-

range IoT!

Prof. Congduc Pham!
http://www.univ-pau.fr/~cpham!

Université de Pau, France!
!

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	100	

8.4. Keynote	talks	

We	provide	here	some	links	to	selected	keynote	talks	in	international	events	where	the	
WAZIUP	project	and	its	approach	towards	low-cost	long-range	IoT	developped	in	WP2	has	
been	presented.	

"Internet-of-Thing	for	All"	
Keynote	at	FDSE'2016/ACOMP'2016	
Can	Tho	University	of	Technology,	Can	Tho,	Vietnam	
November	24th,	2016	
Latest	version	can	be	downloaded	from:	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/IoT4all.pdf	

"Internet-of-Thing	and	reasons	it	is	becoming	a	reality"	
Keynote	at	BDAW'2016	
American	University	of	Bulgaria,	Sofia,	Bulgaria	
November	10th,	2016	
Latest	version	can	be	downloaded	from:	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/BDAW16-IoT-reality.pdf	

"Deploying	low-cost	and	long-range	Internet	of	Things	in	developing	countries:	the	
challenges	of	the	WAZIUP	H2020	project"	
Invited	talk	at	SMYLE	event	on	"Understand	the	issues	and	challenges	of	the	connected	
world"	Neuchatel,	Switzerland,	September	23rd,	2016	
Latest	version	can	be	downloaded	from:	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/Talk-iot-challenges-smyle.pdf	

"Low-power,	long-range	WAN	for	IoT:	a	technology	overview"	
Invited	talk	at	RESSACS'2016	
IRD	Bondy-Paris	
May	10th	2016	
Latest	version	can	be	downloaded	from:	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/RESSACS16-LPWAN-review.pdf	

"Internet-of-Thing	and	reasons	it	is	becoming	a	reality"	
Keynote	at	ICCSA	2016	
University	of	Oum	El	Bouaghi,	Algeria	
April	12th	2016	
Latest	version	can	be	downloaded	from:	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/IoT-reality.pdf	

"	Lower	Cost,	Longer	Range	Sensing	Systems	for	Surveillance	Infrastructures"	
Seminar	at	MAPCI	institute	
Lund	University,	Lund,	Sweden	
March	17th	2016.	
Latest	version	can	be	downloaded	from:	
http://cpham.perso.univ-pau.fr/LORA/WAZIUP/LowerCostLongerRange.pdf	

	 	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	101	

8.5. Scientific	publications	

We	provide	here	some	links	to	selected	scientific	publications	in	international	peer-reviewed	
journals	and	conferences	where	the	WAZIUP	project	and	its	advanced	mechanisms	proposed	
as	part	of	WP2	have	been	presented.	

1. C.	Pham,	A.	Rahim,	P.	Cousin,	"WAZIUP:	A	low-cost	infrastructure	for	deploying	IoT	in	
developing	countries".	Accepted	for	AFRICOMM'2016,	Ouagadougou,	Burkina	Faso,	
Dec.	6-7,	2016.	
	

2. C.	Pham,	"QoS	for	Long-Range	Wireless	Sensors	under	Duty-Cycle	Regulations	with	
Shared	Activity	Time	Usage".	ACM	Transactions	on	Sensor	Networks.	Vol	12(4),	
September	2016.	
	

3. C.	Pham,	"Low-cost,	Low-Power	and	Long-range	Image	Sensor	for	Visual	
Surveillance".	Proceedings	of	the	2nd	Workshop	on	Experiences	with	Design	and	
Implementation	of	Smart	Objects	(SMARTOBJECTS'16).	Co-located	with	ACM	
MobiCom'2016,	New-York,	USA,	October	3-7,	2016.	
Can	be	downloaded	at:	
http://cpham.perso.univ-pau.fr/Paper/SmartObjects16.pdf	
	

4. C.	Pham,	A.	Rahim,	P.	Cousin,	"Low-cost,	Long-range	Open	IoT	for	Smarter	Rural	
African	Villages".	Proceedings	of	the	IEEE	International	Smart	Cities	Conference	
(ISC2),	Trento,	Italy,	Sep.	12-15,	2016.	
Can	be	downloaded	at:	
http://cpham.perso.univ-pau.fr/Paper/ISC2-16.pdf	
	

5. C.	Pham,	"Building	low-cost	gateways	and	devices	for	open	LoRa	IoT	test-beds".	
Proceedings	of	the	11th	EAI	International	Conference	on	Testbeds	and	Research	
Infrastructures	for	the	Development	of	Networks	&	Communities	(TridentCom'2016),	
Hangzhou,	China,	June	13-15,	2016.	
Can	be	downloaded	at:	
http://cpham.perso.univ-pau.fr/Paper/TridentCom2016.pdf	
	

6. C.	Pham,	"Towards	Quality	of	Service	for	Long-range	IoT	in	Unlicensed	Radio	
Spectrum".	Proceedings	of	Wireless	Days	(WD'2016),	Toulouse,	France,	March	2016.	
Can	be	downloaded	at:	
http://cpham.perso.univ-pau.fr/Paper/WD16.pdf	
	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	102	

REFERENCES	

[1]	 LinkLab.	A	comprehensive	look	at	low-power,	wide	are	networks.	2015.	

[2]	 EDN	networks.	Low	power	wide-area	networking	alternatives	for	the	IoT.	
[http://www.edn.com/design/systems-design/4440343/1/Low-power-wide-area-
networking-alternatives-for-the-IoT].	

[3]	 Semtech.	AN1200.22.	LoRa	modulation	basics.	Rev.	2.	May	2015.	

[4]	 RevSpace.	Decoding	LoRa.	[https://revspace.nl/DecodingLora].		

[5]	 Matt	Knight.	Reversing	LoRa.	
[https://static1.squarespace.com/static/54cecce7e4b054df1848b5f9/t/57489e6e07eaa0105
215dc6c/1464376943218/Reversing-Lora-Knight.pdf]	

[6]	 LoRaAlliance.	LoRaWAN	specification	v1.02.	[https://www.lora-alliance.org/What-Is-
LoRa/Technology].	2016.		

[7]	 LoRaAlliance.	LoRaWAN	white	papers.	[https://www.lora-alliance.org/What-Is-
LoRa/LoRaWAN-White-Papers]		

[8]	 Semtech.	Wireless	RF	solutions.	[http://www.semtech.com/wireless-rf]	

[9]	 Semtech.	AN1200.19.	SX127x	Reference	design	overview.	Rev.	1.	May	2014.	

[10]	ETSI.	Electromagnetic	compatibility	and	radio	spectrum	matters	(ERM);	short	range	
devices	(SRD);	radio	equipment	to	be	used	in	the	25	MHz	to	1	000	MHz	frequency	range	with	
power	levels	ranging	up	to	500	mw;	part	1.	2012.	

[11]	Agence	de	Régulation	des	Télécoms	du	Sénégal,	DECISION	DETERMINANT	LES	
CARACTERISTIQUES	ET	LES	CONDITIONS	TECHNIQUES	D’UTILISATION	DES	RESEAUX	ET	DES	
INSTALLATIONS	RADIOELECTRIQUES	EXCLUSIVEMENT	COMPOSES	D’APPAREILS	DE	FAIBLE	
PUISSANCE	ET	DE	FAIBLE	PORTEE.	2004-005	ART/DG/DRC/D.Rég.		

[12]	IBM.	LoraWAN	in	C.	[https://www.research.ibm.com/labs/zurich/ics/lrsc/lmic.html]	

	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	103	

ACRONYMS	LIST	

Acronym	 Explanation	

ABP	 Activation	by	Personalization	

AES	 Advanced	Encryption	Standard	

AFA	 Adaptive	Frequency	Agility	

API	 Application	Programming	Interface	

BW	 Bandwidth	

CSS	 Chirp	Spread	Spectrum	

DIY	 Do-It-Yourself	

DSSS	 Direct	Sequence	Spread	Spectrum	

ETSI	 European	Telecommunications	Standards	Institute	

FAQ	 Frequently	Asked	Questions	

FEC	 Forward	Error	Correction	

FHSS	 Frequency	Hopping	Spread	Spectrum	

FSK		 Frequency	Shift	Keying	

GPRS	 General	Radio	Packet	Service	

GPS	 Global	Positioning	System	

GSM	 Global	System	for	Mobile	communications	

IDE	 Integrated	Development	Environment	

IoT	 Internet-of-Thing	

IP		 Internet	Protocol	

ISM	band	 Industrial	Scientific	Medical	band	

JSON	 JavaScript	Object	Notation	

LBT	 Listen	Before	Talk	

LOS	 Line	of	Sight	

LPWAN	 Low	Power	Wide	Area	Networks	

LTE	 Long-Term	Evolution	

M2M	 Machine-to-Machine	

MAC	 Medium	Access	Control	

MIC	 Message	Integrity	Check	

MVP	 Minimum	Viable	Product	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	104	

NB	 Narrow	Band	

NLOS	 Non	Line	of	Sight	

OTTA	 Over	The	Air	Activation	

PAN	ID	 Personal	Area	Network	ID	

PER	 Packet	Error	Rate	

PHY	layer	 Physical	layer	

QoS	 Quality	of	Service	

REST	API	 REpresentational	State	Transfer	API	

RSSI	 Received	Signal	Strength	Indicator	

SF	 Spreading	Factor	

SNR	 Signal	to	Noise	Ratio	

SRD	 Short	Range	Device	

TTN	 The	Thing	Network	

USB	 Universal	Serial	Bus	

WiFi	 Wireless	Fidelity	
	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	105	

PROJECT	CO-ORDINATOR	CONTACT	

Dr.	Abdur	Rahim	

CREATE-NET	

Via	alla	Cascata	56/D	

Povo-	38123	Trento,	Italy	

Tel:	(+39)	0461	408400	

Fax:	(+39)	0461421157	

Email:	abdur.rahim@create-net.org	

	

Project	Nº	687607	 	 WAZIUP		D2.1	

	 	

	

Page	106	

ACKNOWLEDGEMENT	

This	document	has	been	produced	in	the	context	of	the	H2020	WAZIUP	project.	The	WAZIUP	
project	consortium	would	like	to	acknowledge	that	the	research	leading	to	these	results	has	
received	funding	from	the	European	Union’s	H2020	Research	and	Innovation	Program	under	
the	Grant	Agreement	H2020-ICT-687607.	

	

