

LOW-POWER, LONG-RANGE RADIO TECHNOLOGIES FOR INTERNET-OF-THINGS

IRD/UMMISCO-YAOUNDÉ, UNIVERSITY YAOUNDÉ, CAMEROON

MARCH 16 TH, 2018

PROF. CONGDUC PHAM HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU. FRANCE

IOT & PHYSICAL WORLD

IOT4D DEVELOPMENT FOR RURAL AREAS

Irrigation

NGS

Livestock farming

Fish farming & aquaculture

Storage & logistic

Agriculture

Environment

TELEMETRY AND TRANSMISSION COST

Technology	2G	LAN	
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m
Tx current consumption	200-500mA	500-1000mA	100-300mA
Standby current	2.3mA	3.5mA	NC

ENERGY CONSIDERATION

TX power: 500mA. Mean consumption: (8x500+3592x0.2)/3600=1.31mA

THE WIRELESS SPACE

Energy-Range dilemma

EEE 802.15.4 IN ISM 2.4GHz

Low-power radio in the 2.4GHz band offering 250kbps
 throughput at physical layer

CC2420 Chipcon Products from Texas Instruments Unit Parameter Typ. Condition / Note Min. Max. Current Consumption, transmit mode: P = -25 dBm 8.5 The output power is delivered mA P = -15 dBm 9.9 mA differentially to a 50 Ω singled P = -10 dBm 11 mA ended load through a balun, see 14 P = -5 dBmmA also page 55. P = 0 dBm17.4 mA BitEr Threshold Nore 1E-6 S₀ S_1 $\varphi_1(t)$ 1E-7 Transmitted 1E-8 $\sqrt{E_s}$ $\sqrt{E_e}$ bit = 01E-9 +10-5 +15 Signal-to-Noise Ratio (SNR)

LOWER ENERGY MEANS SHORTER RANGE!

How bad is multi-hop routing?

- Increases packet loss rate
- Increases end-to-end delivery time
- Consumes more energy as intermediate nodes must relay packets
- Limits energy saving mechanism benefits as both sender and intermediate node must be somehow synchronized
- □ Is impacted by intermediate node failure

15 YEARS OF MULTI-HOP ROUTING?

ACADEMICS VS INDUSTRIES ET'S GO BACK TO REALITY!

Millions of sensors, self-organizing, selfconfiguring, with QoS-based multipath routing, mobility, and ... 500 sensors, STATIC deployment, but need to have RELIABILITY, GUARANTEED LATENCY for monitoring and alerting. MUST run for 3 YEARS. No fancy stuff! CAN I HAVE IT?

Placement constraints
Lifetime constraints

From Peng Zeng & Qin Wang

Energy-Range dilemma

LINK BUDGET OF LPWAN

SIMPLE LOSS IN SIGNAL STRENGTH MODEL

Free Space Path Loss model

$$L_{(dB)} = 10 \log\left(\frac{P_t}{P_r}\right) = 20 \log\left(\frac{4\pi d}{\lambda}\right) = 20 \log\left(\frac{4\pi f d}{c}\right)$$

 $L_{(dB)} = 20 \log(f) + 20 \log(d) - 147,55 \, dB$

FSPL assume Gt=Gr=1

FSPL = $\left(\frac{4\pi d}{\lambda}\right)^2$ FSPL = $\frac{P_t}{P_r}G_tG_r$ = $\left(\frac{4\pi df}{c}\right)^2$

LINK BUDGET EXAMPLE

- Received Power (dBm) = Transmitted Power (dBm) + Gains (dB) - Losses (dB) [mainly FSL]
- Example
 - Transmitted power is +14dBm (25mw)
 - Losses is 120dB
 - □ Then Receiver Power (dBm) is -106dBm
- If you have a receiver sensitivity of -137dBm you can handle FSPL up to 151dB!
- Rewriting the equation
 - □ Losses (dB) = Transmitted Power (dBm) Received Power (dBm)
 - Losses = link budget & Received Power = max receiver sensitivity
 - Link budget = Transmitted Power max receiver sensitivity
 - □ 151dB=14dBm (-137dBm)

dBm – power referred to 1 mW,
P _{dBm} =10log(P/1mW)

LINK BUDGET EXAMPLE

- Received Power (dBm) = Transmitted Power (dBm) + Gains (dB) – Losses (dB) [mainly FSL]
- **Example**
 - Transmitted power is +14dBm (25mw)
 - Losses (FSPL) is 1⁶
- □ If you have a rece LoRaTM Modem
- - ❑ Losses (dB) = Trans

 - Link budget = Trar
 - 151dB=14dBm (-

- dBm power referred to 1 mW,
 - P_{dBm}=10log(P/1mW)

- handle FSPL up to 157 dB maximum link budget
- Rewriting the equ < +20 dBm at 100 mW constant RF output vs. V supply
 - +14 dBm high efficiency PA
 - - High sensitivity: down to -137 dBm

THE LONG-RANGE REVOLUTION

The lower the receiver sensitivity, the longer is the range¹⁶

INCREASING RANGE?

- Generally, robustness and sensitivity can be increased when transmitting (much) slower
- A[Sigfox message is sent relatively slowly in a very narrow band of spectrum (hence ultranarrow-band) using Gaussian Frequency-Shift Keying modulation]. Max throughput=~100bps
- LoRa also increases time-on-air when maximum range is needed. But LoRa uses spread spectrum instead of UNB.

300bps-37.5kbps

VERSATILE LPWAN!

Rural areas

Underground

Indoor

THE HIGHER THE BETTER!

Pinit

0 🗖 🕐

UK HAB (High Altitude Ballooning) trials gave 2 way LoRa[™] coverage at up to 240 km. Lowering the data rate from 1000bps to 100bps should allow coverage all the way to the radio horizon, which is perhaps 600 km at the typical 6000-8000m soaring altitude of these balloons. Balloon tracking can be made

SOME SIGFOX RADIO MODULES

TD120x serie from Telecom Design

SigBee module from ATIM

Nemeus MM002-LS-EU LoRa/SigFox

SigFox module from CookingHack (Libelium)

ARM-Nano N8 SigFox module from ATIM

RC1682-SIG from RadioCraft

Adeunis SI868

SIGT002 from CG-Wireless

Research and the second second

SigFox module from Snoc

SIGFOX'S MODEL FOR M2M: THE PERATOR » (ALL-IN-ONE) APPROACH

NGS

LORA MODULES FROM SEMTECH'S SX127X CHIPS

Libelium LoRa is based on Semtech SX1272 LoRa 863-870 MHz for Europe

	LoRa®	Transceivers	
--	-------	--------------	--

TERNET

INGS

	Part Number	Frequency Range (MHz)	Link Budget (dB)	Rx Current (mA)	FSK max DR (kbps)	LoRa DR (kbps)	Max Sensitivity (dBm)	Tx Power (dBm)	а
	SX1272	860 - 1020	158	10	300	0.3 - 37.5	-137	+ 20	
	SX1273	860 - 1020	150	10	300	1.7 - 37.5	-130	+ 20	•
	SX1276	137 - 1020	168	9.9	300	0.018 - 37.5	-148	+ 20	
нс RF	SX1277	137 - 1020	158	9.9	300	1.7 - 37.5	-139	+ 20	222
se	SX1278	137 - 525	168	9.9	300	0.018 - 37.5	-148	+ 20	Modul

Adeunis ARF8030AA- Lo868

Microship RN2483

habSupplies

AMIHO AM093

ARM-Nano N8 LoRa module from ATIM

SODAQ LoRaBee Embit

SODAQ LoRaBee RN2483 22

THINGS BUILD YOUR OWN PRIVATE LORA LPWAN

MAIN LORA PARAMETERS

Main parameters Bandwidth: 62.5kHz, 125kHz, 250kHz, 500kHz Spreading factor: 6 to 12

RELATION TO RANGE

Bandwidth (kHz)	Spreading Factor	Coding rate	Nominal Rb (bps)	Sensitivity (dBm)
125	12	4/5	293	-136
250	12	4/5	586	-133
500	12	4/5	1172	-130

THE PRICE TO PAY!

Very low throughput Transmission time can be several seconds

e					time on air in second for payload size of						
and	LoRa						105	155	205	255	max thr. for
2	mode	BW	CR	SF	5 bytes	55 bytes	bytes	Bytes	Bytes	Bytes	255B in bps
	1	125	4/5	12	0.95846	2.59686	4.23526	5.87366	7.51206	9.15046	223
	2	250	4/5	12	0.47923	1.21651	1.87187	2.52723	3.26451	3.91987	520
	3	125	4/5	10	0.28058	0.69018	1.09978	1.50938	1.91898	2.32858	876
	4	500	4/5	12	0.23962	0.60826	0.93594	1.26362	1.63226	1.95994	1041
	5	250	4/5	10	0.14029	0.34509	0.54989	0.75469	0.95949	1.16429	1752
	6	500	4/5	11	0.11981	0.30413	0.50893	0.69325	0.87757	1.06189	1921
	7	250	4/5	9	0.07014	0.18278	0.29542	0.40806	0.5207	0.63334	3221
	8	500	4/5	9	0.03507	0.09139	0.14771	0.20403	0.26035	0.31667	6442
Th	9	500	4/5	8	0.01754	0.05082	0.08154	0.11482	0.14554	0.17882	11408
	10	500	4/5	7	0.00877	0.02797	0.04589	0.06381	0.08301	0.10093	20212
ghp											
out											

ENERGY CONSUMPTION COMPARAISON

Technology	2G	3G	LAN	ZigBee	Lo Power WAN
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m	O: 90m I: 30m	Same as 2G/3G
Tx current consumption	200-500mA	500-1000mA	100-300mA	18mA	18mA-40mA
Standby current	2.3mA	3.5mA	NC	0.003mA	0.001mA
Energy harvesting (solar, other)	No	No	No	Possible	Possible
Battery 2000mAh (LR6 battery)	4-8 hours(com) 36 days(idle)	2-4 hours(com) X hours(idle)	50 hours(com) X hours(idle)	60hours (com)	120 hours(com) 10 year(idle)

TX power: 30mA. Mean consumption: (8x30+3592x0.2)/3600=0.266mA

2500/0.266=9398h = 391 days = 13 months

TYPICAL SCENARIOS

Provides 2-hop LoRa to solve some connectivity issues in real-world deployment scenario

2-HOP LORA APPROACH

Objective is to have a smart, transparent relay node that can be inserted at anytime between end-devices and gateway

On-the-fly learning of incoming traffic from enddevices: the observation phase

- With densier LoRa networks and more heterogeneous traffic (traditional+image sensors) it is necessary to provide a more robust channel access mechanism
- Objectives are to reduce packet collisions, thus reducing delivery latency, and reduce power consumption due to unsuccessfull transmissions

C. Pham, "Investigating and Experimenting CSMA Channel Access Mechanisms for LoRa IoT Networks", IEEE WCNC'2018.

C. Pham, "Robust CSMA for Long-Range LoRa Transmissions with Image Sensing Devices", IEEE WD'2018.

CSMA-BASED DERIVED FROM 802.11

CSMA ALTERNATIVES & COMPARISON

QUALITY OF SERVICE

- Regulations stipulate that radio activity duty-cycle should be enforced at devices.
- LoRaWAN specification from LoRa Alliance is a first attempt to standardize LoRa networks but no issues on quality of service.
- Proposition of a Long-range Activity Sharing (LAS) mechanism when running under duty-cycle regulations
- Allow a device to be able to send critical data without having to wait for the next cycle

C. Pham, "Deploying a Pool of Long-Range Wireless Image Sensor with Shared Activity Time". Proceedings of the 11th IEEE WiMob'2015, October 19-21, 2015, Abu Dhabi, UAE.

C. Pham, "Towards Quality of Service for Long-range IoT in Unlicensed Radio Spectrum". IEEE Wireless Days (WD'2016), Toulouse, France, March 2016.

C. Pham, "QoS for Long-Range Wireless Sensors under Duty-Cycle Regulations with Shared Activity Time Usage". ACM Transactions on Sensor Networks, Vol. 12(4), 2016.

LONG-RANGE ACTIVITY SHARING (LAS)

A device can transmit more if needed, provided that other devices will decrease their radio activity time accordingly.

DISTRIBUTING REMOTE ACTIVITY TIME USAGE

(«WAZŁUP»)

WAZIUP Open IoT and Big data platform for Africans, by Africans

READY-TO-USE TEMPLATES

GENERIC SENSING IOT DEVICE VS HIGHLY SPECIALIZED

- Build low-cost, low-power, long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

GENERIC SENSING IOT DEVICE

Build low-cost, low-power, Long-range enabled generic platform

NTERNET

CONCLUSIONS

- Low-power, long-range (LR) transmission is a break-through technology for IoT and largescale deployment of wireless (sensor) devices
- With a large variety of applications, products & actors the low-power WAN (LPWAN) eco-system is becoming mature
- New technologies will certainly emerge but the LPWAN « philosophy » is now settled firmly: out-ofthe-box connectivity is now the standard and multi-hop scenarios based on short-range technologies is questionable.