LOWER COST, LONGER RANGE SENSING SYSTEMS FOR SURVEILLANCE INFRASTRUCTURES

MAPCI SEMINAR

LUND UNIVERSITY

MARCH 17TH, 2016

PROF. CONGDUC PHAM

HTTP://WWW.UNIV-PAU.FR/~CPHAM UNIVERSITÉ DE PAU, FRANCE

SENSING SYSTEMS

IoT/WSN deployment made easier in single-hop model !!!

ENERGY-RANGE DILEMMA

Enhanced from M. Dohler "M2M in SmartCities"

HOW COSTLY IS TRANSMISSION?

Technology	2G	3G	LAN
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m
Tx current consumption	200-500mA	500-1000mA	100-300mA
Standby current	2.3mA	3.5mA	NC

and the second se	
+ +	TX power: 500mA
	P = I x V = 500 x 3.3 = 1650mW
ACELL ACELL	E = P x t -> t = E/P
18720 JOULES	11345s or 3h9mins

Technology	2G	3G	LAN
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m
Tx current consumption	200mA- 500mA	500mA – 1000mA	50mA
Standby current	2.3mA	3.5mA	NC

Haven't considered:

- Baseline power consumption of the sensor board
- RX consumption!
- Event capture consumption
- Event processing consumption

- Low-power radio in the 2.4GHz band offering 250kbps throughput at physical layer
- Power transmission from 1mW to 100mW for range from 100m to about 1km is LOS
- CSMA/CA
- BPSK, used as physical layer
 in ZigBee

CALLER AND A SUBSCREEK	ないでも、	a series and	Section States	-	MEL MEL	
	0				+ +	TX power 0dbm: 17.4mA
		OXYC				P = I x V = 17.4 x 3.3 = 57.42mW
		NO.			ACELL	E = P x t -> t = E/P
	sa [1872	20 JOULES	326018s or 90.5h
GG2420	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RE RF ansceiver				Haven't considered: - Baseline power consumption of
Chipcon Products from Texas Instrumen	ts				<i>GG2420</i>	- RX consumption: 18.8mA!
Parameter	Min.	Тур.	Max.	Unit	Condition / Note	 Event capture consumption
Current Consumption, transmit mode:						 Event processing consumption
P = -25 dBm P = -15 dBm		8.5 9.9		mA mA	The output power is delivered differentially to a 50 Ω singled	
P = -10 dBm P = -5 dBm		11 14		mA mA	ended load through a balun, see also page 55.	
P = 0 dBm		17.4		mA		

15 YEARS OF MULTI-HOP ROUTING?

LOW-POWER AND LONG-RANGE?

LOW POWER WAN?

Technology	2G	3G	LAN	ZigBee	Lo Power WAN
Range (I=Indoor, O=Outdoor)	N/A	N/A	O: 300m I: 30m	O: 90m I: 30m	Same as 2G/3G
Tx current consumption	200-500mA	500-1000mA	100-300mA	18mA	18mA
Standby current	2.3mA	3.5mA	NC	0.003mA	0.001mA
Energy harvesting (solar, other)	No	No	No	Possible	Possible
Battery 2000mAh (LR6 battery)	4-8 hours(com) 36 days(idle)	2-4 hours(com) X hours(idle)	50 hours(com) X hours(idle)	60hours (com)	120 hours(com) 10 year(idle)
Module Revenue Annually	12 \$	20 \$	4 \$	\$3	3\$

Tables from Semtech

TYPICAL SCENARIOS

INCREASING RANGE?

- Generally, robustness and sensitivity can be increased when transmitting (much) slower
- A[Sigfox message is sent relatively slowly in a very narrow band of spectrum (hence ultranarrow-band) using Gaussian Frequency-Shift Keying modulation]
- LoRa also increases time-on-air when maximum range is needed. But LoRa uses spread spectrum instead of UNB

WHY THE LPWAN REVOLUTION?

VERSATILE LPWAN!

Rural areas

Underground

Indoor

Pinit

EXTREME LONG-RANGE!

UK HAB (High Altitude Ballooning) trials gave 2 way LoRa[™] coverage at up to 240 km. Lowering the data rate from 1000bps to 100bps should allow coverage all the way to the radio horizon, which is perhaps 600 km at the typical 6000-8000m soaring altitude of these balloons. Balloon tracking can be made

WHAT ABOUT THE THROUGHPUT?

-1

0

2

3

SIGFOX

Sigfox uses ultranarrow band (UNB) of about 100Hz with GMSK (~BPSK)

Typical throughput is about 100bps

Devices can typically send up to 140 messages of 12bytes per day (operator limits) LoRa modulation is more versatile, using CSS variant

LoRa

Sensitivity and throughput depend on 3 LoRa parameters: BW (bandwidth), CR (coding rate) and SF (spreading factor)

Throughput range is 240bps to 37500bps

WHAT ABOUT THE THROUGHPUT?

Rul

6dB rang

12d

LORA'S PARAMETERS

Parameters

$$R_{b} = SF * \frac{Rate Code}{\left[\frac{2^{SF}}{BW}\right]} bits/sec$$

Bandwidth: 62.5kHz, 125kHz, 250kHz, 500kHz

□ Rate code: 4/4+CR (CR=1, 2, 3, 4)

□ Spreading factor: 6 to 12

Sensitivity: lowest input power with acceptable link quality, typically 1% PER

SpreadingFactor (RegModemConfig2)	Spreading Factor (Chips / symbol)	LoRa Demodulator SNR
6	64	-5 dB
7	128	-7.5 dB
8	256	-10 dB
9	512	-12.5 dB
10	1024	-15 dB
11	2048	-17.5 dB
12	4096	-20 dB

Bandwidth (kHz)	Spreading Factor	Nominal Rb (bps)	Sensitivity (dBm)
125	6	9380	-122
125	12	293	-137
250	6	18750	-119
250	12	586	-134
500	6	37500	-116
500	12	1172	-131

e of thumb			12		101
increase = twice the	Bandwidth (kHz)	Spreading Factor	Coding rate	Nominal Rb (bps)	Sensitivity (dBm)
je in LOS	125	12	4/5	293	-136
B needed for urban areas	250	12	4/5	586	-133
	500	12	4/5	1172	-130

Tables from Semtech

TIME ON AIR FOR VARIOUS LORA SETTINGS

					time on air in second for payload size of					
	LoRa						105	155	205	255
) Jge	mode	BW	CR	SF	5 bytes	55 bytes	bytes	Bytes	Bytes	Bytes
Rar	1	125	4/5	12	0.95846	2.59686	4.23526	5.87366	7.51206	9.15046
	2	250	4/5	12	0.47923	1.21651	1.87187	2.52723	3.26451	3.91987
	3	125	4/5	10	0.28058	0.69018	1.09978	1.50938	1.91898	2.32858
	4	500	4/5	12	0.23962	0.60826	0.93594	1.26362	1.63226	1.95994
	5	250	4/5	10	0.14029	0.34509	0.54989	0.75469	0.95949	1.16429
	6	500	4/5	11	0.11981	0.30413	0.50893	0.69325	0.87757	1.06189
	7	250	4/5	9	0.07014	0.18278	0.29542	0.40806	0.5207	0.63334
	8	500	4/5	9	0.03507	0.09139	0.14771	0.20403	0.26035	0.31667
_	9	500	4/5	8	0.01754	0.05082	0.08154	0.11482	0.14554	0.17882
	10	500	4/5	7	0.00877	0.02797	0.04589	0.06381	0.08301	0.10093
lybr										
put										

LORA VS SIGFOX

Usual (ultra) narrow-band (UNB) vs spread spectrum (SS) arguments

UNB has lower in-band receive noise and SigFox can have more channels than LoRa

But UNB needs tighter receiver synchronization and more complex signal processing at receiver (SigFox uses advanced SDR at receiver to analyse the total band)

SS can more rapidly be saturated so LoRa may have more interference issues in dense environments

From networking guys perspective, LoRa is more versatile with possibility to build ad-hoc mesh networks

SOME SIGFOX RADIO MODULES

SOME READY-TO-USE SIGFOX DEVICES

ATmega328 DC connector (2.1mm)

Snootlab Akeru is Arduino-like

Sens'it from Axible Technologies

SigFox demonstrator by Adeunis

HidNSeek

Universal push button from Bttn Inc

LORA MODULES FROM SEMTECH'S SX127X CHIPS

DORJI DRF1278DM is based on Semtech SX1278 LoRa 433MHz

HopeRF RFM series

Multi-Tech

MultiConnect mDot

LinkLabs

Symphony module

habSupplies

AMIHO AM093

Libelium LoRa is based on Semtech SX1272 LoRa 863-870 MHz for Europe

IMST IM880A-L is based on Semtech SX1272 LoRa 863-870 MHz for Europe

inAir9/9B based on SX1276

Embit LoRa

ARM-Nano N8 LoRa module from ATIM

SODAQ LoRaBee Embit

Froggy Factory LoRa module (Arduino)

LoRa[™] Long-Range Sub-GHz Module (Part # RN2483)

SODAQ LoRaBee RN2483 24

LORA MODULES FROM SEMTECH'S SX127X CHIPS

Libelium LoRa is based on Semtech SX1272 LoRa 863-870 MHz for Europe

LoRa® Transceivers

................

- 6	Part Number	Frequency Range (MHz)	Link Budget (dB)	Rx Current (mA)	FSK max DR (kbps)	LoRa DR (kbps)	Max Sensitivity (dBm)	Tx Power (dBm)	а
	SX1272	860 - 1020	158	10	300	0.3 - 37.5	-137	+ 20	
	SX1273	860 - 1020	150	10	300	1.7 - 37.5	-130	+ 20	•
	SX1276	137 – 1020	168	9.9	300	0.018 - 37.5	-148	+ 20	
нс RF	SX1277	137 - 1020	158	9.9	300	1.7 - 37.5	-139	+ 20	
se	SX1278	137 - 525	168	9.9	300	0.018 - 37.5	-148	+ 20	Module

habSupplies

AMIHO AM093

Adeunis ARF8030AA- Lo868

ARM-Nano N8 LoRa module from ATIM

SODAQ LoRaBee Embit

Microship RN2483

SODAQ LoRaBee RN2483 25

SIGFOX'S MODEL FOR M2M: THE PERATOR » (ALL-IN-ONE) APPROACH

..vs PRIVATE LONG RANGE NETWORKS WITH LORA

Add LoRa radio module to your preferred dev platform

Install a LoRa gateway and start collecting data

LORA GATEWAYS (NON EXHAUSTIVE LIST)

OTHER LONG-RANGE TECHNOLOGIES

LICENSE-FREE SUB-GHZ CONSTRAINTS

- Shared medium so long-range transmission in dense environments can create lots of interference!
- Activity time is constrained from 0.1%, 1% 10% duty-cycle depending on frequency: 3.6s, 36s/hour to 360s/hour

Band	Edge Frequencies		Field / Power	Spectrum Access	Band Width
	Fe-	Fe+			
g(Note 7)	865 MHz	868 MHz	+6.2 dBm /100 kHz	1 % or LBT AFA	3 MHz
g(Note 7)	865 MHz	870 MHz	-0.8 dBm / 100 kHz	0.1% or LBT AFA	5 MHz
g1	868 MHz	868.6	14 dBm	1 % or LBT AFA	600 kHz
g2	868.7 MHz	869.2 MHz	14 dBm	0.1% or LBT AFA	500 kHz
g3	869.4 MHz	869.65 MHz	27 dBm	10 % or LBT AFA	250 kHz
g4	869.7 MHz	870 MHz	7 dBm	No requirement	300 kHz
g4	869.7 MHz	870 MHz	14 dBm	1 % or LBT AFA	300 kHz

For SigFox, the operator typically limits the number of messages per day (140) with penalty for over usage. e.g. new messages/ day = 140 – (2 * « #msg_overuse») applied during «#msg_overuse» days

LBT+AFA

Listen Before Talk and Adaptive Frequency Agility can relax the duty-cycle constraints...

🗅 ... but still

100s / hour on every 200kHz BW
 no more than 1s for a single transmission 88

□ ... so may not be that interesting!

((**1**)) M2M **7** layers StrrNet libelium Laird LACROIX ACN ALFLEX. **Contributor members** LORIO T Lyngsoe m2öcity Adeunis ALPWISE FastNet ESPOTEL MCS mct ANDREA MEDRIA Technologie Sponsor members muRata **Nable** Communication miromico AT4 gemalto arkessa FLASHNET Antibard Mathematical Mathematical Co. NEMEUS actility AUGTEK bouygues \bigcirc nke Neptun Light, Inc BETTSCHEN braveridge **A** ManThink members indeta Inmarsat nuri occammd CIRSUIT DESIGN.INC. CommuniThings S ComVision B.V. ENDETEC IBM HOMERIDER SYSTEMS **CISCO** Contela Contela, Inc d Oi Electric Co.,Ltd. On Yield Inc Ltd OMNIMPEX d.m.i.c Z **X LACE** LinkLabs M LA POSTE Adopter pr. 总 基联无限 EasyLinkin EDITAG TELKOMSEL EDF ker**link** 🚵 kpn PRIVA ЖеL.MD. < elecsys effectas MULTITECH M2B Communications Planning 1. (EI rakon MICROCHIP M2M ELSYS.se enevo éolane proXimus QO'WISIO senet RFTech _____ my Devices **OrbiWise** RoyalTek RTLS ESS ispher SEMTECH Sagemcom $\widehat{\mathbf{R}}$ RTX Schneider stream SK telecom eee EXPEMB FINSECU RISINGHE swisscom seas-nve 🜔 SENSING O LABS SERCO/M (今东日信息技术 Ext of Technology Future Electronics GIMASI SNEF Goobie Vision GlobalSa GoldCard 2 + Silicon Control \bigcirc GORKE PARU X SF gupsy SRETT Solvera Lynx O Hub One

HON HAI PRECISION

Innovation Vision F2

55 INSIGMA

SYNOPSYS'

TTA

clickey

TalkPool

erromicron

telent

TE MAN

telog

WHAT IS LORAWAN?

WILL MAIN MARKET BE OPERATOR BASED?

...COMMUNITY BASED?

OR FROM LOCAL ACTORS?

Irrigation

Fish farming & aquaculture

Storage & logistic

Agriculture

Fresh water

DEVELOPPING COUNTRIES

WAZIUP is an EU H2020 project (2016-2019)
 contributes to long-range networks for rural applications with WP2

TYPICAL SCENARIOS

POWERFULL MICRO-CONTROLLER BOARDS...

Analog pins

Come with build-in analog-todigital converter (ADC) which usually have 10-bit resolution:

0V means 0 3.3V or 5V means 1024 = 2¹⁰

Atmel | SMART SAMA5D2

...GETTING SMALLER AND SMALLER !!

Arduino Pro Mini

Theairboard on kickstarter

http://blog.atmel.com/2015/12/16/ rewind-50-of-the-best-boards-from-2015/

http://blog.atmel.com/2015/04/09/25-devboards-to-help-you-get-started-on-yournext-iot-project/

Tinyduino

STM32 Nucleo-32

DESIGN AND ADAPTATION

- Build low-cost, low-power, Long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities, economic actors, stakeholders,...

е

DESIGN AND ADAPTATION

- Build low-cost, low-power, Long-range enabled generic platform
- Methodology for low-cost platform design
- Technology transfers to user communities,

New Pro Mini atmega328 3.3 V 8 M remplacer ATmega128 pour

US \$1.86 / pièce

stakeholders,...

48

Long-Range communication library (mostly sending functions)

49

RUNNING FOR 1 YEAR

Low-Power library from RocketScream

Thanks to T. Mesplou and P. Plouraboué for their help

Wakes-up every 10min, take a measure (temp) and send to GW

146µA in deepsleep mode,93mA when activeand sending

COMMUNICATION TO GATEWAY IS STRAIGHTFORWARD FOR DEVELOPERS

LESS THAN 50€

FROM GW TO CLOUD PLATFORMS

Once data is received at gateway, traditional Internet tools can be used to push data to cloud

High-level scripting language provides connectivity to any cloud platforms depending on end-user needs

RUNNING WITHOUT INTERNET

Internship of N. Bertuol, collaboration with ConnectingNature (F. Duvignac)

https://github.com/CongducPham/LowCostLoRaGw

BUILD YOUR OWN LOW-COST TEST-BED (1)

Interactive end-device

/dev/cu.usbmodemFA131 (Arduino/Genuino |

Hello world

6477 bytes of free memory. SX1276 detected, starting SX1276 LF/HF calibration

^\$*********Power ON: state 0 ^\$Default sync word: 0x12 ^\$LoRa mode 4 ^\$Setting mode: state 0 ^\$Channel CH_10_868: state 0 ^\$Set LoRa Power to x ^\$Power: state 0 ^\$Get Preamble Length: state 0 ^\$Preamble Lenath: 8 ^\$LoRa addr 6: state 0 Rcv serial: hello world

\$\$X1272/76 configured as device. Waiting serial input for serial-RF bridge

Sending. Length is 11 hello world Payload size is 11 ToA is w/5B Libelium header 322 Packet number 0 LoRa Sent in 545 LoRa Sent w/CAD in 545 Packet sent, state 0

Command	Action
/@M1#	set LoRa mode 1
/@C12#	use channel 12
/@PL/H/M/x/X#	set power to Low, High, Max, extreme (PA_BOOST), eXtreme (+20dBm)
/@A9#	set node addr to 9
/@ACK#hello w/ac	sends "hello w/ack" and request an ACK
/@ACKON#	enables ACK (for all messages)
/@ACKOFF#	disables ACK
/@CAD#	performs an SIFS CAD, i.e. 3 or 6 CAD depending on the LoRa mode
/@CADON3#	uses 3 CAD when sending data (normally SIFS is 3 or 6 CAD, DIFS=3SIFS)
/@CADOFF#	disables CAD (IFS) when sending data
/@RSSI#	toggles checking of RSSI before transmission and after CAD
/@EIFS#	toggles for extended IFS wait
/@T5000#	send a message at regular time interval of 5000ms. Use /@T0# to disable periodic sending
/@TR5000#	send a message at random time interval between [2000, 5000]ms.
/@Z200#	sets the packet payload size to 200 for periodic sending
/@\$50#	sends a 50B user payload packet filled with '#'. The real size is 55B with the protocol header
/@D56#	set the destination node to be 56, this is permanent, until the next D command
/@D56#hello	send "hello" to node 56, destination addr is only for this message
/@D1#/@M1#	send the command string "/@M1#" to node 1 (i.e. gateway)

Implement & test channel access methods
 SIFS=xCAD; DIFS=3SIFS; set x with /@CADONx#
 Use background traffic generator devices

□ /@T2000# or /@TR5000#

BUILD YOUR OWN LOW-COST TEST-BED (3)

University Gaston Berger, Saint-Louis, Senegal	NTE GASTON
The gateway will be used to deploy low-cost IoT solutions in the context of the H2020 WAZIUP project.	ALL DU DU DU
Easy Global Market, Nice, France	
The gateway will be used to deploy LoRa service for various demonstration purposes	easy global market
As part of the WAZIUP project, a starter kit with a gateway will be deployed at project's partner's site:	
1- Farmerline (Ghana) 2- iSpace (Ghana) 3- CTIC (Senegal)	
IIDRE SAS	
The gateway will be used to deploy LoRa service for various demonstration purposes	IIDRE
Connecting Nature	
The gateway will be used to deploy and test LoRa-based telemetry services for various agriculture applications	
Chuck Swiger from West Virginia (US)	
has a ds18b20 temp probe ThinkSpeak channel using our gateway	
The Oceanographic Observatory of Banuyls/mer (part of University of Paris 6)	OBSERVATOIRE
The gateway will be used to deploy and test LoRa-based telemetry services for various environmental surveillance applications	de Banyuk/Mer 1852
Matthew Way from New Zeland	
Develops great LoRa-based pest surveillance system. He is testing our solution as well as his own custom design solutions.	

WHAT ABOUT QUALITY OF SERVICE?

Regulations stipulate that radio activity duty-cycle should be enforced at devices and that end-users should not be able to modify it « easily ».

LoRaWAN specification from LoRa Alliance is a first attempt to standardize LoRa networks but no issues on quality of service.

ONG-RANGE VERSION OF. OUR IMAGE SENSOR

ESVE

INGS

00(

WHAT IF I WANT TO TRANSMIT **IMAGES?**

					time on air in second for payload size of					
	LoRa						105	155	205	255
	mode	BW	CR	SF	5 bytes	55 bytes	bytes	Bytes	Bytes	Bytes
	1	125	4/5	12	0.95846	2.59686	4.23526	5.87366	7.51206	9.15046
٦	2	250	4/5	12	0.47923	1.21651	1.87187	2.52723	3.26451	3.91987
	3	125	4/5	10	0.28058	0.69018	1.09978	1.50938	1.91898	2.32858
	4	500	4/5	12	0.23962	0.60826	0.93594	1.26362	1.63226	1.95994
٦	5	250	4/5	10	0.14029	0.34509	0.54989	0.75469	0.95949	1.16429
	6	500	4/5	11	0.11981	0.30413	0.50893	0.69325	0.87757	1.06189
	7	250	4/5	9	0.07014	0.18278	0.29542	0.40806	0.5207	0.63334
	8	500	4/5	9	0.03507	0.09139	0.14771	0.20403	0.26035	0.31667
	9	500	4/5	8	0.01754	0.05082	0.08154	0.11482	0.14554	0.17882
ſ	10	500	4/5	7	0.00877	0.02797	0.04589	0.06381	0.08301	0.10093

Optimized image encoding at medium quality: 16384b down to 1366b (ratio 12).

Will generate 7 pkts using 250 max payload

7*1.96 = 13.72s

62

DEPLOYING YOUR LORA NETWORK

OPERATOR-BASED APPROACH (W SUBSCRIPTIO Wha

Whatever the deployment approach, the gateway knows how many devices are deployed by a given organization

Our proposition is to view all device' activity time in a global manner, with the gateway taking care of radio time usage consistency

IUT STALIUT

PRIVATELY-BASED

RACH

ech Conduit

LONG-RANGE ACTIVITY SHARING (LAS)

A device can transmit more if needed, provided that other devices will decrease their radio activity time accordingly.

64

DISTRIBUTING REMOTE ACTIVITY TIME USAGE

OTHER ISSUES TO TAKE INTO

ACCOUNT

- Minimise the number of UPDT messages sent by the gateway because the gateway's radio time is also limited
 - UPDT can have cumulative behavior if no remote activity time has been used
- Support sleep periods of end-devices
 - The network is synchronized for control messages (REG, INIT, UPDT). UPDT msg that can not use cumulative behavior are queued for transmission at next transmission slot. At rcv, UPDT have to be applied sequentially.
- Maintain (loose) synchronization
 - □ If no UDPT are scheduled, the gateway periodically sends a BEACON. Clock drift is limited to a BEACON period
- Dynamic insertion of new end-devices
 - New devices can either stay out of the managed pool (then only 36s of activity time/h is allowed), or join by waiting for the next UPDT/BEACON msg
 - Every hour, end-devices decide if they want to join the pool or not
- Give priority to control msg
 - □ SIFS/DIFS mechanism are implemented using LoRa Channel Activity Detection
- Avoid interleaving of several image transmissions
 - □ Use DIFS for first image packet, then SIFS
- Improve LoRa network efficiency
 - Move from pure ALOHA to CSMA mechanism with CAD+RSSI tests prior to any transmission

MPLEMENTATION AVAILABLE

Copersonate watch	pi@raspberr × pi@raspberr ×
<image/>	<pre>Pioraspherrypi Power ON: state O Channel CH_10_858: state 0 Power M: state 0 Channel CH_10_858: state 0 Power M: state 0 St1272 configured as LR-BS. Waiting RF input for transparent RF-serial bridge MLASBase::ON MLASBase::clear dev table RCv from LoBa. src=10 seq=7 le =10 SNR=7 RSSIpkt=-62 rcv ctrl pkt info: 10,7,10,7,-62] (src=10 seq=7 len=10 SNR=7 RSSI62) LASBase::LaS payload size is 10 MLASBase::DATA msg MLASBase::dev_table index 0 MLASBase::dev_table index 0 MLASBase::clear find device hello LASBase::clear find device hello LASBase::c</pre>
	I Packet sent, state 0

SENDING MESSAGE UNDER

CREEKEEBEEREEEEEEEEEEEEEEEEEEEEEEE

LAS SERVICES

68

CONCLUSIONS

- Low-power, long-range (LR) transmission is a break-through technology for IoT and largescale deployment of wireless (sensor) devices
- With a large variety of applications, products & actors the low-power WAN (LPWAN) eco-system is becoming mature
- New technologies will certainly emerge but the LPWAN « philosophy » is now settled firmly: out-ofthe-box connectivity is now the standard and multi-hop scenarios based on short-range technologies is questionable.