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Abstract

This paper describes a purely analytic approach for establishing central limit theorems for sums or
integrals

∫

t∈IT

Pm(Xt)dt and quadratic forms
∫

t,s∈IT

b(t − s)Pm,n(Xt, Xs)dsdt of Appell polynomials

Pm(Xt), Pm,n(Xt, Xs), where Xt is a linear process, that is, Xt =
∫

u∈Rd a(t − u)dξu, t ∈ R
d, where

ξt, t ∈ R
d has stationary independent increments. We review known results and outline some open

problems related to this approach.

1 Introduction

1. Time series motivation. One-dimensional discrete time series with long memory have been ex-
tensively studied. The FARIMA family, for example, models the series Xt, t ∈ Z as the solution of an
equation

φ(B)(1 − B)dXt = θ(B)εt (1)

where B is the operator of backward translation in time, φ(B), θ(B) are polynomials, d is a real number
and εt is white noise. Using this family of models, it is usually possible via an extension of the classical
Box-Jenkins methodology, to chose the parameter d and the coefficients of the polynomials φ(B), θ(B)
such that the residuals εt display white noise behaviour and hence may safely be discarded for prediction
purposes.

In view of the prevalence of spatial statistics applications, it is important to develop models and methods
which replace the assumption of a one-dimensional discrete time index with that of a multidimensional
continuous one.

This review paper was motivated by the attempt to extend certain central limit theorems of Giraitis
and Surgailis, Fox and Taqqu, Avram and Brown and Giraitis and Taqqu to the case of multidimen-
sional continuous indices. We have not yet achieved this goal, but we offer some natural conjectures and
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the observation that the main part of the one-dimensional analytical approach does extend to the wider
multidimensional setup.

The crucial tools are reviewed in two appendices. In Appendix A, section 2 we review several forms
of the Brascamp-Lieb-Barthe inequality, a generalisation of the Hölder and Young inequalities which is
instrumental for our calculations. In Appendix B, section 3 we review the well-known diagram formula for
computing moments/cumulants of Wick products, and its application for studying discrete and continuous
time series.

Throughour the paper, we will review the results in [6] and [8], which have been only established in the
classic discrete sum one-dimensional setup, but we will adopt a unifying measure theoretic notation,
in order to be able to discuss possible extensions.

2. The model. Let ξA, A ⊂ R
d denote a set indexed process with mean zero and finite second moments,

independent values over disjoint sets and stationary distribution, and let Xt, t ∈ R
d denote a linear random

field

Xt =

∫

u∈Rd

â(t − u)ξ(du), t ∈ R
d, (2)

with a square-integrable kernel â(t), t ∈ R
d. For various other conditions which ensure that (2) is well-

defined, see for example Anh, Heyde and Leonenko [2], pg. 733.
By choosing an appropriate ”Green function” â(t), this wide class of processes includes, for example,

the solutions of many differential equations with random noise ξ(du).
The random field X(t) is observed on a sequence IT of increasing finite domains. In the discrete-time

case, in keeping with tradition, the case IT = [0, T − 1]d, T ∈ Z+ or IT = In = [1, n]d, will be assumed. In
the continuous case, rectangles IT = {t ∈ R

d : −Ti/2 ≤ ti ≤ Ti/2, i = 1, ..., d will be taken. For simplicity,
we will assume always T1 = ... = Td = T → ∞, but the extension to the case when all coordinates converge
to ∞ at the same order of magnitude is immediate.

3. Asymptotic behavior of quadratic form estimators. The asymptotic behavior, in particular, the
asymptotic normality of quadratic forms of stationary discrete time series, plays an important role in the
choice of appropriate models. Let us recall, for example, the context of parametric estimation of Gaussian
processes, where for an AR(1) process Xn+1 = φXn + εn+1, the Yule-Walker estimator φ̂ of φ is given by

φ̂ =

∑T
i=1 XiXi−1
∑T

i=1 X2
i

and thus the asymptotic behavior of these quadratic forms will be instrumental in providing confidence
intervals for the estimation of φ̂.

Limit theory for quadratic forms is a subset of the more general one of providing limit theorems for
sums/integrals and bilinear forms

ST =

∫

t∈IT

h(Xt)dt, QT =

∫

t1,t2∈IT

b̂(t1 − t2) h(Xt1 , Xt2)dt1dt2 (3)

where Xt is a stationary sequence. In the discrete time case, ST and QT become respectively

ST =

T∑

i=1

h(Xi), QT =

T∑

i=1

T∑

j=1

b̂(i − j) h(Xi, Xj).

2



These topics, first studied by Dobrushin and Major [18] and Taqqu [37] in the Gaussian case, gave rise
to very interesting non-Gaussian generalisations, and are still far from fully understood in the case of the
continuous, ”spatial” multidimensional indices arising in spatial statistics.

It is well-known in the context of discrete time series that the expansion in univariate/bivariate Appell
polynomials determines the type of central limit theorem (CLT) or non-central limit theorem (NCLT)
satisfied by the sums/quadratic forms (3). Hence, we consider below the problem (3) with h being an
Appell polynomial.

4. The problem. In this paper we consider central limit theorems for quadratic forms

QT = Q
(m,n)
T =

∫

t,s∈IT

b̂(t − s)Pm,n(Xt, Xs)dsdt (4)

involving the bivariate Appell polynomials

Pm,n(Xt, Xs) =: Xt, . . . , Xt
︸ ︷︷ ︸

m

, Xs, . . . , Xs
︸ ︷︷ ︸

n

: m,n ≥ 0,m + n ≥ 1,

which are defined via the Wick product : X1, . . . , Xm : (see Appendix B).
For a warm-up, we consider also sums

ST = S
(m)
T =

∫

t∈IT

Pm(Xt)dt (5)

involving the univariate Appell polynomials

Pm(Xt) =: Xt, . . . , Xt
︸ ︷︷ ︸

m

:

We will assume that E|ξI1 |
2(m+n) < ∞ in order to ensure that QT has a finite variance.

The variables Xt will be allowed to have short-range or long-range dependence (that is, with summable
or non-summable sum of correlations), but the special short-range dependent case where the sum of cor-
relations equals 0 will not be considered, since the tools described here are not sufficient in that case.

5. The method of cumulants. One of the classical approaches to establish asymptotic normality
for processes having all moments, consists in computing all the scaled cumulants χk,T of the variables of
interest, and in showing that they converge to those of a Gaussian distribution, that is, to 0 for k ≥ 3.

For symmetric bilinear forms in stationary Gaussian discrete-time series Xt, with covariances ri−j , i, j ∈
Z, a direct computation yields the formula

χk = χ(QT , ..., QT ) = 2k−1(k − 1)! Tr[(TT (b)TT (f))k] (6)

where TT (b) = (b̂i−j , i, j = 1, ..., T ), TT (f) = (ri−j , i, j = 1, ..., T ) denote Toeplitz matrices of dimension
T ×T and Tr denotes the trace. A limit theorem for products of Toeplitz matrices provided by Grenander
and Szego(58) and strenghened by Avram(88) yields then the asymptotic normality, under the condition
that b(λ)f(λ) ∈ L2.
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In the case of bilinear forms in Hermite/Appell polynomials Pm,n(X,Y ) of Gaussian/linear time series,
or in continuous time, more complicated cumulants formulas arise from the so-called diagram expansion.
Still these, can be expressed as sums/integrals involving a combinatorial structure similar to (6).

6. The spectral approach. We will assume throughout that all the existing cumulants of our stationary
process Xt are expresses through Fourier transforms ck(t1, t2, ..., tk) of ”spectral densities” fk(λ1, ..., λk−1) ∈
L1, i.e:

ck(t1, t2, ..., tk) =

∫

λ1,...,λk−1∈S
ei

Pk−1

j=1
λj(tj−tk)fk(λ1, ..., λk−1)µ(dλ1)...µ(dλk−1)

=

∫

λ1,...,λk∈S
ei

Pk
j=1

λj tj fk(λ1, ..., λk−1) δ(

k∑

j=1

λj) µ(dλ1)...µ(dλk)

where, throughout the paper, integrals involving delta functions will simply be used as a convenient notation
for the corresponding integrals over lower dimensional subspaces. Throughout, S will denote the ”spectral”
space of discrete and continuous processes, i.e. [−π, π]d with Lebesgue measure normalized to unity, and
R

d with Lebesgue measure, respectively.
Replacing now the time functions ck, b̃, ã by their Fourier representations yields spectral integral repre-

sentations for the cumulants χk(ST ), χk(QT ) corresponding to a particular graph (or matroid) structure.

7. Delta graph integrals. Let G = (V, E) denote a graph with V vertices, E edges and co(G) components.
Let M denote the V × E incidence matrix of the graph.

Definition 1 The incidence matrix M of a graph has entries Mv,e = ±1 if the vertex v is the end/start
point of the edge e, and 0 otherwise.

Definition 2 (Delta graph integrals). Suppose that associated to the edges of a graph G = (V, E) there
is a set fe(λ), e = 1, . . . , E of functions satisfying integrability conditions

fe ∈ Lpe(µ(dλ)), 1 ≤ pe ≤ ∞,

where µ is normalized Lebesgue mesure on the torus [−π, π] or Lebesgue mesure on R.
A Delta graph integral is an integral of the form:

JT = JT (G, fe, e = 1, ..., E) =

∫

λ1,...,λE∈S
f1(λ1)f2(λ2)...fE(λE)

V∏

v=1

∆T (uv)
E∏

e=1

µ(dλe) (7)

where E, V and M denote respectively the number of edges, vertices, and the incidence matrix of the graph
G, where

(u1, ..., uV )′ = M(λ1, ..., λE)′

and where a prime denotes a transpose. Finally,

∆T (x) =
sin(Tx/2)

x/2
(8)

is the Fejer kernel.
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This concept arose from the study of cumulants of sums/quadratic forms of stationary Gaussian pro-
cesses. A simple computation based on the diagram formula [8] – see also Proposition 2– shows that the

cumulants χk(S
(m)
T ) and χk(Q

(m,n)
T ) are sums of Delta graph integrals.

To obtain the central limit theorem by the method of cumulants, one wants then to show that

limT→∞ T−1χ2(S
(2)
T ) is finite and that limT→∞ T−k/2χk(S

(2)
T ) = 0 for k ≥ 3.

To establish this one can use a ”Szego-type” limit theorem for Delta graph integrals. Such a result
(which extends the Grenander and Szego result for traces of Toeplitz matrices) was provided in Avram-
Brown [6], in the discrete time case.

Quoting Tutte [38], it is probably true that ”any theorem about graphs expressable in terms of edges
and circuits exemplifies a more general result about matroids”, a concept which formalizes the properties
of the ”rank function” r(A) obtained by considering the rank of an arbitrary set of columns A in a given
arbitrary matrix M (thus, all matrices with the same rank function yield the same matroid). Indeed, Tutte’s
”conjecture” was true in this case; a matroid Szego-type limit theorem, in which the graph dependence
structure is replaced with that of an arbitrary matroid, was given in Avram [8].

8. Delta matroid integrals. A matroid is a pair E , r : 2E → N of a set E and a ”rank like function” r(A)
defined on the subsets of E . The most familiar matroids, associated to the set E of columns of a matrix
and called vector matroids, may be specified uniquely by the rank function r(A) which gives the rank of
any set of columns A (matrices with the same rank function yield the same matroid). Matroids may also
be defined in equivalent ways via their independent sets, via their bases (maximal independent sets) via
their circuits (minimal dependent sets), via their spanning sets (sets containing a basis) or via their flats
(sets which may not be augmented without increasing the rank). For excellent expositions on graphs and
matroids, see [34], [35] and [39]. We ask the reader not familiar with this concept to consider only the
particular case of graphic matroids, which are associated to the incidence matrix of an oriented graph.
It turns out that the algebraic dependence structure translates in this case into graph-theoretic concepts,
with circuits corresponding to cycles.

Here, we will only need to use the fact that to each matroid one may associate a dual matroid with
rank function r∗(A) = |A|− r(M)+ r(M −A), and that in the case of graphic matroids, the dual coincides
with the matroid associated with the C × E matrix M ∗ whose rows c = 1, ..., C are obtained by assigning
arbitrary orientations to the circuits (cycles) c of the graph, and by writing each edge as a sum of ± the
circuits it is included in, with the ± sign indicating a coincidence or opposition to the orientation of the
cycle 1.

Definition 3 Let fe(λ), e = 1, . . . , E denote functions associated with the columns of M and satisfying
integrability conditions

fe ∈ Lpe(dµ), 1 ≤ pe ≤ ∞, (9)

where µ is Lebesgue mesure on R or normalized Lebesgue mesure on the torus [−π, π]. Let M denote an
arbitrary matrix in the first case, and with integer coefficients in the second case. Let f̂e(k), k ∈ I denote
the Fourier transform of fe(λ), i.e.

f̂e(k) =

∫

S
eikλfe(λ)µ(dλ)

1It is enough to include in M
∗ a basis of cycles, thus excluding cycles which may be obtained via addition modulo 2 of

other cycles, after ignoring the orientation.
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A Delta matroid integral is defined by either one of the two equivalent expressions:

JT = JT (M,fe, e = 1, ..., E) =

∫

j1,...,jm∈IT

f̂1(i1)f̂2(i2)...f̂E(iE)
V∏

v=1

djv (10)

=

∫

λ1,...,λE∈S
f1(λ1)f2(λ2)...fE(λE)

V∏

v=1

∆T (uv)

E∏

e=1

µ(dλe) (11)

where (i1, ..., iE) = (j1, ..., jV )M and (u1, ..., uV )′ = M(λ1, ..., λE)′ and where, in the torus case, the linear
combinations are computed modulo [−π, π].

Observe that (11) is the same expression as (7). A “Delta matroid integral” is also called a “(Delta) graph
integral” when the matroid is associated to the incidence matrix M of a graph (graphic matroid).

9. The Szego-type limit theorem for Delta matroid integrals. Let

zj =
1

pj
∈ [0, 1], j = 1, · · · , E, (12)

where pj is defined in (9). Theorem 1 below, which is a summary of Theorems 1, 2 and Corollary 1 of
[8], yields an upper bound and sometimes also the limit for Delta matroid integrals, in the case of discrete
one-dimensional time series. The order of magnitude obtained is:

αM (z) = V − r(M) + max
A⊂1,...,E

[
∑

j∈A

zj − r∗(A)] = max
A⊂1,...,E

[co(M − A) −
∑

j∈A

(1 − zj)] (13)

where we define
co(M − A) = V − r(M − A). (14)

Note: In the case of graph integrals, the function co(M − A) represents the number of components, after
the edges in A have been removed.

The function αM (z) is thus found in the case of graph integrals by the following optimization problem:

The ”graph breaking” problem: Find a set of edges whose removal maximizes the number

of remaining components, with
∑

j∈A(1 − zj) =
∑

j∈A(1 − p−1
j ) as little as as possible.

The function αM (z) is then used in the following theorem which is a Szego-type limit theorem for Delta
matroid integrals.

Theorem 1 Let JT = JT (M,fe, e = 1, ..., E) denote a Delta matroid integral and let r(A), r∗(A) denote
respectively the ranks of a set of columns in M and in the dual matroid M ∗.

Suppose that for every row l of the matrix M , one has r(M) = r(Ml), where Ml is the matrix with the
row l removed. Then:

1.

JT (M,fe, e = 1, ..., E) ≤ cMTαM (z) (15)

where cM is a constant and αM (z) is given by (13).
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2. If, moreover, αM (z) = V − r(M) = co(M) (or, equivalently,
∑

j∈A zj ≤ r∗(A),∀A), then:

lim
T→∞

JT (M)

co(M)
= cM

∫

SC

f1(λ1)f2(λ2)...fE(λE)

C∏

c=1

µ(dyc) := J(M ∗) (16)

where (λ1, ...λE) = (y1, ..., yC)M∗ (with every λe reduced modulo [−π, π] in the discrete case), and C
denotes the rank of the dual matroid M ∗.

3. If a strict inequality αM (z) > co(M) holds, then part a) may be strengthened to:

JT (M) = o(T α(M))

Remark. The results of the theorem, that is, the expression of αM (z) and the limit integral J(M ∗)
depend on the matrix M only via the two equivalent rank functions r(A), r∗(A), i.e. only via the matroid
dependence structure between the columns.

10. Central limit theorems for variables whose cumulants are Delta matroid integrals. We
draw now the attention to the convenient simplifications offered by these tools for establishing central limit
theorems, cf. [6], [7], [8]. They arise from the fact that the cumulants are expressed as sums of integrals
of the form (7) and their order of magnitude may be computed via the graph-optimization problem (13).
Then a Szego-type limit theorem (Theorem 1) is used to conclude the proof. This shows that the central
limit theorem can sometimes be reduced to a simple optimization problem.

We quote now Corollary 2 of [8].

Corollary 1 Let ZT be a sequence of zero mean random variables, whose cumulants of all orders are Delta
matroid integrals:

χk(ZT ) =
∑

G∈Gk

JT (G)

where Gk are such that
α(G) ≤ k/2,∀G ∈ Gk

Then, a central limit theorem
ZT

σT 1/2
→ N(0, 1)

holds, with σ2 =
∑

G∈G2
J(G∗), where J(G∗) is defined in the Theorem 1(b).

This results reduce complicated central limit theorems for Gaussian processes to simple ”graph breaking
problems”. For example, the result on bilinear forms of Avram(92), Theorem 4, and of Giraitis and
Taqqu(97), Theorem 2.3, follow from the easily checked fact that the conditions of Corollary 1 hold in the
extremal points of the polytope in Figure 1.

Remarks

1. The extremal points are solutions of equations αG(z) = 1, obtained for certain specific graphs G ∈ G2.
The fact that at these points the inequalities αG(z) ≤ k/2, ∀G ∈ Gk maybe checked via the graph-
breaking problem described after equation (13). An example is presented at the end of the paper.
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Dm,n

(0,1/2)

z2

(1−1/m,1/2)

(1−1/n,m/(2n))

A(1−1/(m+n), 0)
z1

m z1 + 2 z  = m2

Figure 1: The domain of the central limit theorem

2. Giraitis and Taqqu expressed the upper boundary of this polytope in a convenient fashion:

dm(z1) + dm(z1) + 2z2 = 1 (17)

where dm(z) = 1 − m(1 − z)+.

11. Sketch of the proof of Theorem 1. We sketch now the proof of the Szego-type result for Delta
graph integrals given in [6], in the discrete one-dimensional setup, and for a connected graph. Note that
in a connected graph there are only V − 1 independent rows of the incidence matrix M (or independent
variables uj), since the sum of all the rows is 0 (equivalently, uV = −

∑V −1
v=1 uv). Thus, the general formula

(14) simplifies here to r(M) = V − 1.

1. The first step for proving Theorem 1 is to establish that the measures

T−1∆T (−
V −1∑

v=1

uv)
V −1∏

v=1

∆T (uv)
V −1∏

v=1

dµ(uv)

converge weakly to the measure δ0(u1, ..., uV −1) This convergence of measures holds since their Fourier
coefficients converge –see [20], Lemma 7.1– and since the absolute variations of these measures are
uniformly bounded, as may be seen by applying the corresponding Brascamp-Lieb-Barthe inequality
(see Theorem 2 below) to the Delta graph integral, using estimates of the form

||∆T ||s−1
v

≤ k(sv)T
1−sv

with optimally chosen sv, v = 1, · · · , V .
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2. The main idea behind the proof of Theorem 1 is to integrate in (11) first over the complement of
the space generated by the uv’s, v = 1, . . . , V . This is easier in the graph case, when, fixing some
spanning tree T in the graph, we have a one to one correspondence between a set of independent
cycles (with cardinality C) and the complementary set of edges T c. Assume w.l.o.g. that in the list
(λ1, ..., λE), the edges in T c are listed first, namely (λe, e ∈ T c) = (λ1, ..., λC ). We make the change
of variables y1 = λ1, ..., yC = λC , and (u1, ..., uV −1)

′ = M̃(λ1, ..., λE)′, where M̃ is the first V − 1
rows of M . Thus,

(y1, ..., yC , u1, ..., uV −1)
′ =

(
IC 0

M̃

)

(λ1, ..., λE)′

where the first rows are given by an identity matrix IC completed by zeroes. Inverting this yields

(λ1, ..., λE) = (y1, ..., yC , u1, ..., uV −1)
(
M∗ | N

)

i.e. it turns out that the first columns of the inverse matrix are precisely the transpose of the dual
matroid M ∗. Note that (λ1, ..., λE) are linear functions of (y1, ..., yC , u1, ..., uV −1) such that when
u1 = ... = uV −1 = 0 the relation (λ1, ..., λE) = (y1, ..., yC )M∗ is satisfied.

Definition 4 The function

J(u1, ..., ur(M)) =

∫

y1,...,yC∈S
f1(λ1)f2(λ2)...fE(λE)

C∏

c=1

dµ(yc) (18)

where λe are represented as linear combinations of y1, ..., yC , u1, ..., uV −1 via the linear transformation
(λ1, ..., λE) = (y1, ..., yC , u1, ..., uV −1)

(
M∗ | N

)
defined above will be called a graph convolution.

Note: A key point in the discrete one-dimensional setup was then to show that under appropriate
Lp conditions, the Brascamp-Lieb-Barthe inequality (GH) (see Theorem 2 below) ensures the conti-
nuity of the graph convolution functions J(u1, ..., ur(M)) in the variables (u1, ..., ur(M)). In the spatial
statistics context [3], [4], this continuity was usually assumed and indeed checking if this assump-
tion may be relaxed to Lp integrability conditions in the spectral domain is one of the outstanding
difficulties for the spatial extension.

Recall now that r(M) = V − 1. The change to the variables y1, ..., yC , u1, ..., uV −1 and integration
over y1, ..., yC transforms the Delta graph integral into

∫

u1,...,uV −1∈S
J(u1, ..., uV −1)

V∏

v=1

∆T (uv)
V −1∏

v=1

dµ(uv)

Finally, the convergence of the Fejer kernel to a δ function implies the convergence of the scaled Delta
graph integral JT (M,fe, e = 1..., E) to J(0, ..., 0) = J(M ∗, fe, e = 1..., E), establishing Part 2 of the
theorem.

Remark. It is not difficult to extend this change of variables to the case of several components and then
to the matroid setup. In the first case, one would need to choose independent cycle and vertex variables
y1, ..., yr(M∗) and u1, ..., ur(M), note the block structure of the matrices, with each block corresponding to
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a graph component, use the fact that for graphs with several components, the rank of the graphic matroid
is r(M) = V − co(G) and finally Euler’s relation E − V = C − co(G), which ensures that

E =
(
V − co(G)

)

+ C = r(M) + r(M ∗)

12. Conclusions. The problem of establishing the central limit theorem by the method of moments is
related to some beautiful mathematics: the Brascamp-Lieb-Barthe inequality, the continuity of matroid
convolutions and the matroid weak Szego theorem.

This leads to fascinating mathematical questions like strengthening the matroid weak Szego theorem
to a strong one (i.e. providing correction terms).

The analytic methodology presented above suggests also the following conjecture:

Conjecture. A central limit theorem holds in the continuous one-dimensional index case, with the
same normalization and limiting variance as in the discrete one-dimensional index case, if f ∈ Lz−1

1

, b̂ ∈

Lz−1

2

, where the exponents z1, z2 lie on the upper boundary of the polytope in the Figure 1.

These tools are also expected to be useful for studying processes with continuous multidimensional
indices. Let us mention for example the versatile class of isotropic spatio-temporal models, of a form
similar to (1) (with the Laplacian operator ∆ replacing the operator B), recently introduced by Anh,
Leonenko, Kelbert, McVinnish, Ruiz-Medina, Sakhno and coauthors [1], [2], [3],[4], [32]. These authors use
the spectral approach as well and the tools described above hold the potential of simplifying their methods.

Finally, even for unidimensional discrete processes, these tools might be useful for strengthening the
central limit theorem to sharp large deviations statements, as in the work on one-dimensional Gaussian
quadratic forms of Bercu, Gamboa, Lavielle and Rouault [13], [14].

2 Appendix A: the Brascamp-Lieb-Barthe inequality

Set here V = m and E = n. Let M be a m×n matrix, x = (x1, . . . , xm) and let l1(x), . . . ln(x) be n linear
transformations such that

(l1(x), . . . , ln(x)) = (x1, . . . , xm)M.

Let fj, j = 1, . . . , n be functions belonging respectively to

Lpj
(dµ), 1 ≤ pj ≤ ∞, j = 1, . . . , n.

We consider simultaneously three cases:

(C1) µ(dx) is the Lebesgue measure on the torus [−π, π]nj , and M has all its coefficients integers.

(C2) µ(dx) is the counting mesure on Z
nj , M has all its coefficients integers, and all its non-singular minors

of dimension m × m have determinant ±1.

(C3) µ(dx) is Lebesgue measure on (−∞,+∞)nj .

The following theorem, due when nj = 1,∀j in the first case to [6], in the second to [7] and in the last
to [10], with arbitrary nj yields conditions on

zj =
1

pj
, j = 1, . . . , n,
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so that a generalized Hölder inequality holds. The key idea of the proof in [6], [7], is that it is enough
to find those points z= (z1, . . . , zn) with coordinates zi equal to 0 or 1, for which the inequality (GH)
below holds, then by the Riesz-Thorin interpolation theorem, (GH) will hold for the smallest convex set
generated by these points. This yields:

Theorem 2 (Brascamp-Lieb-Barthe inequality). Suppose, respectively, that the conditions (C1),
(C2) and (C3) hold and let fj, j = 1, . . . , n be functions fj ∈ Lpj

(µ(dx)), 1 ≤ pj ≤ ∞, where the
integration space is either [−π, π]nj , Z

nj , or R
nj , and µ(dx) is respectively normalized Lebesgue measure,

counting measure and Lebesgue measure. Let zj = (pj)
−1.

For every subset A of columns of M (including the empty set ∅), denote by r(A) the rank of the matrix
formed by these columns, and suppose respectively:

(c1)
∑

j∈A

zj ≤ r(A), ∀A

(c2)
∑

j∈A

zj + r(Ac) ≥ r(M), ∀A

(c3)
T∑

j=1

zj = m, and one of the conditions (c1) or (c2) is satisfied.

Then, the following inequality holds:

(GH)

∣
∣
∣
∣

∫ T∏

j=1

fj(lj(x))

m∏

i=1

dµ(xi)

∣
∣
∣
∣
≤ K

T∏

j=1

‖fj‖pj

where the constant K in (GH) is equal to 1 in the cases (C1) and (C2) and is finite in the case (C3) (and
given by the supremum over centered Gaussian functions – see [10]).

Alternatively, the conditions (c1-c3) in the theorem are respectively equivalent to:

1. z = (z1, . . . , zn) lies in the convex hull of the indicators of the sets of independent columns of M ,
including the void set.

2. z = (z1, . . . , zn) lies above the convex hull of the indicators of the sets of columns of M which span
its range.

3. z = (z1, . . . , zn) lies in the convex hull of the indicators of the sets of columns of M which form a
basis.

Examples:

1) As an example of (c1) , consider the integral

J =

∫

T

∫

T
f1(x1)f2(x2)f3(x1 + x2)f4(x1 − x2)dx1dx2

where T denotes the torus [0, 1], so fj(x ± 1) = fj(x), j = 1, . . . , 4. Here m = 2, n = 4 and the matrix

M =

(
1 0 1 1
0 1 1 −1

)

11



has rank r(M) = 2. The flats consist of ∅, the single columns and M . Only ∅ and M are flat, irreducible,
and not singleton. Since (a1′) always holds for ∅, it is sufficient to apply it to M . The theorem yields

|J | ≤ ‖f1‖1/z1
‖f2‖1/z2

‖f3‖1/z3
‖f4‖1/z4

for any z = (z1, z2, z3, z4) ∈ [0, 1]4 satisfying z1 + z2 + z3 + z4 ≤ 2, e.g. if z = (0, 1, 1/4, 1/2), then

|J | ≤

(

sup
0≤x≤1

|f1(x)|

) (∫ 1

0
|f2(x)|dx

) (∫ 1

0
f4
3 (x)dx

)1/4 (∫ 1

0
f2
4 (x)dx

)1/2

.

2. To illustrate (c2), consider

S =
∞∑

x1=−∞

∞∑

x2=−∞

f1(x1)f2(x2)f3(x1 + x2)f4(x1 − x2).

Since m,n and M are as in Example 1, we have r(M) = m and the only flat and irreducible sets
which are not singleton are ∅ and M . Since it is sufficient to apply (c2) to ∅, the theorem yields
|S| ≤ ‖f1‖1/z1

‖f2‖1/z2
‖f3‖1/z3

‖f4‖1/z4
for any z = (z1, z2, z3, z4) ∈ [0, 1]4 satisfying z1 + z2 + z3 + z4 ≥ 2,

e.g. |S| ≤
∏4

j=1

(
∑+∞

x=−∞ f2
j (x)

)1/2

.

3 Appendix B: the application of the diagram formula for computing
moments/cumulants of Wick products of linear processes

1. Wick products. We start with some properties of the Wick products (cf. [24], [36]) and their
application in our problem.

Definition 5 The Wick products (also called Wick powers) are multivariate polynomials:

: y1, . . . , yn :(ν)=
∂n

∂z1 . . . ∂zn

[

exp(

n∑

1

zjyj)/

∫

Rn

exp(

n∑

1

zjyj)dν(y)

]∣
∣
∣
∣
∣
z1=···=zn=0

corresponding to a probability measure ν on R
n. Interpret this as a formal expression if ν does not have a

moment generating function, the Wick products being then obtained by formal differentiation.

A sufficient condition for the Wick products : y1, . . . , yn :(ν) to exist is E|Yi|
n < ∞, i = 1, . . . , n.

When some variables appear repeatedly, it is convenient to use the notation

: Yt1 , . . . , Yt1
︸ ︷︷ ︸

n1

, ..., Ytk , . . . , Ytk
︸ ︷︷ ︸

nk

:= Pn1,...,nk
(Yt1 , ..., Ytk )

(the indices in P correspond to the number of times that the variables in “: :” are repeated). The
resulting polynomials Pn1,...,nk

are known as Appell polynomials. These polynomials are a generalization
of the Hermite polynomials, which are obtained if Yt are Gaussian; like them, they play an important role
in the limit theory of quadratic forms of dependent variables (cf. [36], [24], [5]).

12



For example, when m = n = 1, P1,1(Xt, Xs) = XtXs −EXt Xs, and the bilinear form (4) is a weighted
periodogram with its expectation removed.

Let W be a finite set and Yi, i ∈ W be a system of random variables. Let

Y W =
∏

i∈W

Yi

be the ordinary product,
: Y W :

the Wick product, and
χ(Y W ) = χ(Yi, i ∈ W )

be the (mixed) cumulant of the variables Yi, i ∈ W , respectively, which is definedk as follows:

χ(Y1, . . . , Yn) =
∂T

∂z1 . . . ∂zn
log E exp(

T∑

i=1

zjYj)
∣
∣
∣
z1=···=zn=0

.

The following relations hold ([36], Prop. 1):

: Y W :=
∑

U⊂W

Y U
∑

{V }

(−1)rχ(Y V1) · · ·χ(Y Vr),

Y W =
∑

U⊂W

: Y U :
∑

{V }

χ(Y V1) · · ·χ(Y Vr) =
∑

U⊂W

: Y U : E(Y W\U )

where the sum
∑

U⊂W is taken over all subsets U ⊂ W, including U = ∅, and the sum
∑

{V } is over all

partitions {V } = (V1, . . . , Vr), r ≥ 1 of the set W\U . We define Y ∅ =: Y ∅ := χ(Y ∅) = 1.

2. The cumulants diagram representation. An important property of the Wick products is the
existence of simple combinatorial rules for calculation of the (mixed) cumulants, analogous to the familiar
diagrammatic formalism for the mixed cumulants of the Hermite polynomials with respect to a Gaussian
measure [33]. Let us assume that W is a union of (disjoint) subsets W1, . . . ,Wk. If (i, 1), (i, 2), . . . , (i, ni)
represent the elements of the subset Wi, i = 1, . . . , k, then we can represent W as a table consisting of
rows W1, . . . ,Wk, as follows:





(1, 1), . . . , (1, n1)
. . . . . . . . .

(k, 1), . . . , (k, nk)



 = W. (19)

By a diagram γ we mean a partition γ = (V1, . . . , Vr), r = 1, 2, . . . of the table W into nonempty sets Vi

(the “edges” of the diagram) such that |Vi| ≥ 1. We shall call the edge Vi of the diagram γ flat, if it is
contained in one row of the table W ; and free, if it consists of one element, i.e. |Vi| = 1. We shall call the
diagram connected, if it does not split the rows of the table W into two or more disjoint subsets. We shall
call the diagram γ = (V1, . . . , Vr) Gaussian, if |V1| = · · · = |Vr| = 2. Suppose given a system of random
variables Yi,j indexed by (i, j) ∈ W . Set for V ⊂ W ,

Y V =
∏

(i,j)∈V

Yi,j, and : Y V : = : (Yi,j, (i, j) ∈ V ) : .

13



For each diagram γ = (V1, . . . , Vr) we define the number

Iγ =

r∏

j=1

χ(Y Vj ). (20)

Proposition 1 (cf. [24], [36]) Each of the numbers

(i) EY W = E(Y W1 . . . Y Wk),

(ii) E(: Y W1 : · · · : Y Wk :),

(iii) χ(Y W1 , . . . , Y Wk),

(iv) χ(: Y W1 :, . . . , : Y Wk :)

is equal to
∑

Iγ

where the sum is taken, respectively, over
(i) all diagrams,
(ii) all diagrams without flat edges,
(iii) all connected diagrams,
(iv) all connected diagrams without flat edges.

If EYi,j = 0 for all (i, j) ∈ W , then the diagrams in (i)-(iv) have no singletons.

It follows, for example, that E : Y W := 0 (take W = W1, then W has only 1 row and all diagrams have
flat edges).

3. Multilinearity. An important property of Wick products and of cumulants is their multilinearity.
This implies that for QT defined in (4) that

χk(QT , ..., QT ) =
∫

ti,si∈IT

χ(: Xt1,1
, . . . , Xt1,m

, Xs1,1
, . . . , Xs1,n

:, . . . , : Xtk,1
, . . . , Xtk,m

, Xsk,1
, . . . , Xsk,n

:)

k∏

i=1

b̂ti−si
dtidsi

where the cumulant in the integral needs to be taken for a table W of k rows R1...., Rk, each containing
the Wick product of m variables identically equal to Xtk and of n variables identically equal to Xsk

.
A further application of part (iv) of Proposition 1 will decompose this as a sum of the form

∑

γ∈Γ(n1,...,nk)

∫

ti,si∈IT

Rγ(ti, si)

k∏

i=1

b̂ti−si
dtidsi

where Γ(n1, . . . , nk) denotes the set of all connected diagrams γ = (V1, . . . , Vr) without flat edges of the
table W and Rγ(ti, si) denotes the product of the cumulants corresponding to the partition sets of γ.

Example 1: When m = n = 1, the Gaussian diagrams are all products of correlations and the symmetry
of b̂ implies that all these 2k−1(k − 1)! terms are equal. We get thus the well-known formula (6) for the
cumulants of discrete Gaussian bilinear forms.
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Example 2: When m = n = 1 and k = 2, besides the Gaussian diagrams we have also one diagram
including all the four terms, which makes intervene the fourth order cumulant of Xt.

4. The cumulants of sums and quadratic forms of linear processes. Consider

Sm
T =

T∑

i=1

Pm(Xti), Qm,n
T =

T∑

i=1

T∑

j=1

b̂(i − j) Pm,n(Xti , Xtj ). (21)

By part (iv) of proposition 1, applied to a table W of k rows R1...., Rk, with K = n1 + ...nk variables,
and by the definition (20) and of Iγ, we find the following formula for the cumulants of the Wick products
of linear variables (2):

χ(: Xt1,1
, . . . , Xt1,n1

:, . . . , : Xtk,1
, . . . , Xtk,nk

:) =
∑

γ∈Γ(n1,...,nk)

κγJγ(~t) (22)

where Γ(n1, . . . , nk) denotes the set of all connected diagrams γ = (V1, . . . , Vr) without flat edges of the
table W , κγ = χ|V1|(ξI1) . . . χ|Vr|(ξI1) and

Jγ(t1, ..., tK) =

r∏

j=1

JVj
(tVj

) (23)

=

∫

s1,...,sr∈I

k∏

j=1

[â(tj,1 − sj,1) . . . â(tj,n1
− sj,n1

) . . . â(tk,1 − sk,1) . . . â(tk,nk
− sk,nk

)] ds1, . . . , dsr

=

∫

λ1,...,λK

ei
PK

j=1
tj λj

K∏

i=1

a(λi)
r∏

j=1

δ(
∑

i∈Vj

λi)
K∏

i=1

dλi (24)

where si,j ≡ sl if (i, j) ∈ Vl, l = 1, . . . , r.
We will apply now this formula to compute the cumulants of (21), in which case each row j contains

just one, respectively two random variables. We will see below that this yields decompositions as sums of
Delta graph integrals with a specific graph structure.

For example, it is easy to check that the variance of S
(2)
T is:

χ2(S
(2)
T ) = 2

∫

λ1,λ2∈S
f(λ1)f(λ2)∆T (λ1 − λ2)∆T (λ2 − λ1)

2∏

e=1

µ(dλe).

Note that there are two possible diagrams of two rows of size 2, and that they yield both a graph on two
vertices (corresponding to the rows), connected one to the other via two edges.

For another example, the third cumulant χ3(S
(2)
T ) is a sum of terms similar to:

22

∫

λ1,λ2,λ3∈S
f(λ1)f(λ2)f(λ3)∆T (λ1 − λ2)∆T (λ2 − λ3)∆T (λ3 − λ1)

3∏

e=1

µ(dλe).

This term comes from the 22 diagrams in which the row 1 is connected to row 2, 2 to 3 and 3 to 1.
The general structure of the graphs that we get is as follows (see [8]):
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1. In the case of cumulants of sums, we get graphs belonging to the set Γ(m, k) of all connected graphs
with no loops over k vertices, each of degree m.

2. In the case of cumulants of quadratic forms, we get – see Figure 2 – graphs belonging to the set
Γ(m,n, k) of all connected bipartite graphs with no loops whose vertex set consists of k pairs of
vertices. The ”left” vertex of each pair arises out of the first m terms : Xt1 , ..., Xtm : in the diagram
formula, and the ”right” vertex of each pair arises out of the last n terms : Xs1

, ..., Xsn : The edge
set consists of:

(a) k ”kernel edges” pairing each left vertex with a right vertex. The kernel edges will contribute
below terms involving the function b(λ).

(b) A set of ”correlation edges”, always connecting vertices in different rows, and contributing below
terms involving the function f(λ)). They are arranged such that each left vertex connects to m
and each right vertex connects to n such edges, yielding a total of k(m+n)/2 correlation edges.

Thus, the k ”left vertices” are of degree m + 1, and the other k vertices are of degree n + 1. (The
“costs” mentionned in Figure 2 refer to (13)).

correlation edges 

with cost  1− z

kernel edges

with cost   1− z

m "1−z1" edges
n "1−z

1

1" edges

2

2 ’

kernel edges

   pairs of ’1−  z k

Figure 2: The graphs appearing in the expansion of cumulants of quadratic forms. Here k=4,
m=5, n=4. The figure displays only some of the k(m+n)/2=18 correlation edges.

The following proposition is easy to check:

Proposition 2 Let X(t), t ∈ IT denote a stationary Gaussian process. Then, the cumulants of the sums
and quadratic forms defined in (21) are given respectively by:

χk,m = χk(S
(m)
T , ..., S

(m)
T ) =

∑

γ∈Γ(m,k)

κγ σγ(T )
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and
χk,m,n = χk(Q

(m,n)
T , ..., Q

(m,n)
T ) =

∑

γ∈Γ(m,n,k)

κγ τγ(T )

where ∆T (x) = sin(Tx/2)
x/2 is the Fejer kernel, Γ(m, k), Γ(m,n, k) were defined above, and

σγ(T ) =

∫

~t∈Ik
T

Jγ(~t)dt =

∫

λ1,...,λK

k∏

j=1

∆T (

m j
∑

i=m(j−1)+1

λi)

K∏

i=1

a(λi)

r∏

j=1

δ(
∑

i∈Vj

λi)

K∏

i=1

dλi (25)

τγ(T ) =

∫

µ1,...,µk,λ1,...,λK ,λ′
1
,...,λ′

K′

k∏

j=1



∆T (µj +

m j
∑

i=m(j−1)+1

λi) ∆T (−µj +

n j
∑

i=n(j−1)+1

λ′
i) b(µj)





×
K∏

i=1

a(λi)

K′
∏

i=1

a(λ′
i)

r∏

j=1

δ(
∑

i∈Vj

λi +
∑

i∈Vj

λ′
i)

K∏

i=1

dλi

K′
∏

i=1

dλ′
i

k∏

i=1

dµi. (26)

These graph structures are simple enough to allow a quick evaluation of the orders of magnitude αM (z),
via the corresponding graph-breaking problems; for the case of bilinear forms we refer to Lemma 1 in [8].

For the case of sums, the domain of applicability of the CLT is 1 − z1 ≥ 1/m. We check now that at
the extremal point 1 − z1 = 1/m we have

αG(z1) = max
A

p(A) = max
A

[co(G −A) −
∑

e∈A

(1 − ze)] = max
A

[co(G −A)− |A|(1 − z1)] ≤ k/2,∀G ∈ Gk (27)

where we interpret p(A) as a ”profit,” equal to the ”gain” co(G − A) minus the “cost”
∑

e∈A(1 − ze). We
thus need to show that at the extremal point 1 − z1 = 1/m,

co(G − A)] ≤ |A|/m + k/2, ∀G ∈ Gk.

Indeed, this inequality holds with equality for the ”total breaking” A = E (which contains (km)/2 edges).
It is also clear that no other set of edges A can achieve a bigger ”profit” p(A) (defined in (27)) than the
total breaking, since for any other set A which leaves some vertex still attached to the others, the vertex
could be detached from the others with an increase of the number of components by 1 and a cost no more
than m 1

m ; thus the profit is nondecreasing with respect to the number of vertices left unattached and thus
the total breaking achieves the maximum of p(A).
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