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Abstract. — The classical method of characteristics does not apply to parabolic or mixed type
PDEs. Using the formalism of stochastic embedding of dynamical systems initiated in [Cresson-
Darses, J. Math. Phys. 48, 072703 (2007)], we define a notion of stochastic characteristics.
We then look for stochastic characteristics of some classical parabolic and mixed type PDEs
: the Burger’s equation and the Heat equation. In particular, we prove that the stochastic
characteristics of the Burger’s equation and the Heat equation correspond to (weak) critical
points of an explicit stochastic Lagrangian functional over particular sets of stochastic processes.
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1. Introduction

The classical method of characteristics for a PDE is to look for curves s 7→ (x(s), t(s)) where

x(s) and t(s) are solutions of an ordinary differential equation such that solutions u(x, t) of

the PDE satisfy
d

ds
(u(x(s), t(s))) = F (x(s), t(s)),

where F is the non homogeneous part of the PDE.

In many cases, we can choose
dt

ds
= 1

so that one is reduced to find a curve t → x(t) satisfying the following ordinary differential

equation
d

dt
(u(x(t), t)) = F (x(t), t).

The method of characteristics does not work for parabolic PDE’s and PDE’s of mixed type

like elliptic/parabolic (as for example the transport equation with diffusion).

Using the formalism of stochastic embedding of dynamical systems introduced in [1], we

develop a notion of (time reversal) stochastic characteristics extending the classical notion.

The definitions are given in Section 2.2. In Section 3, we give examples of parabolic and

mixed type PDEs, the Burger’s equation and the Heat equation respectively, for which we

can characterize the (time reversal) stochastic characteristics. In Section 4, we prove that

the (time reversal) stochastic characteristics of the Burger’s equation and the Heat equation

correspond to (weak) critical point of an explicit stochastic Lagrangian functional. The

class of stochastic processes under consideration for each equation is different and explicitly

defined. In Section 5, we discuss some perspectives of our approach.

Related works concerning the use of the stochastic calculus of variations in the sense of

[1] in order to derive results about classical PDEs can be found in the articles of Yasue and

co-workers ([17],[13]).

2. Toward a notion of stochastic characteristics for PDEs

2.1. Reminder on stochastic derivatives. —

2.1.1. Notations. — Let T > 0, ν > 0 and d ∈ N∗. Let L be the set of all measurable

functions f : [0,T ] × Rd → Rd satisfying the following hypothesis: There exists K > 0 such

that for all x, y ∈ Rd : supt |f(t, x)− f(t, y)| ≤ K |x− y| et supt |f(t, x)| ≤ K(1 + |x|).



STOCHASTIC CHARACTERISTICS FOR PDES 3

We are given a probability space (Ω,A,P) on which a family (W (b,σ))(b,σ)∈L×L of Brownian

motions indexed by L × L is defined. If b, σ ∈ L, we denote by P(b,σ) the natural filtration

associated to W (b,σ). Let P be the filtration generated by the filtrations P(b,σ) where (b, σ) ∈
L× L, and we set: For t ∈ [0,T ],

Pt =
∨

(b,σ)∈L×L

P(b,σ)
t .

Let F ([0, T ] × Rd) be the space of measurable functions defined on [0, T ] × Rd and let

F ([0, T ]× Ω) be the space of measurable stochastic processes defined on [0, T ]× Ω.

Let us define the involution φ : F ([0, T ]×Rd)→ F ([0, T ]×Rd) such that for all t ∈ [0, T ] and

x ∈ Rd, (φu)(t, x) = −u(T − t, x). We also define the time-reversal involution on stochastic

processes: r : F ([0, T ]× Ω)→ F ([0, T ]× Ω), r(X)t(ω) = XT−t(ω).

It is convenient to use the bar symbol to denote these two involutions. We now agree to

denote deterministic functions by small letters and stochastic processes by capital letters. So

there will not be any confusion when using the bar symbol: u := φu and X := r(X).

The space Rd is endowed with its canonical scalar product 〈·, ·〉. Let |·| be the induced norm.

If f : [0,T ]×Rd → R is a smooth function, we set ∂jf = ∂f
∂xj

. We denote by ∇f = (∂if)i the

gradient of f and by ∆f =
∑

j ∂
2
j f its Laplacian. For a smooth map Φ : [0,T ]×Rd → Rd, we

denote by Φj its jth-component, by (∂xΦ) its differential which we represent into the canonical

basis of Rd: (∂xΦ) = (∂jΦ
i)i,j , and by ∇ · Φ =

∑
j ∂jΦ

j its divergence. By convention, we

denote by ∆Φ the vector (∆Φj)j . The notation (Φ · ∇)Φ denotes the parallel derivative of

Φ along itself, whose coordinates are: ((Φ · ∇)Φ)i =
∑

j Φj∂jΦ
i. The image of a vector

u ∈ Rd under a linear map M is simply denoted by Mu, for instance (∂xΦ)u. A map

a : [0,T ] × Rd → Rd ⊗ Rd is viewed as a d × d matrix whose columns are denoted by ak.

Finally, we denote by ∇ · a the vector (∇ · ak)k.

2.1.2. Stochastic derivatives. —

Definition 1. — We denote by Λ1 the space of all diffusions X satisfying the following

conditions:

(i) X is a solution on [0,T ] of the SDE: dXt = b(t,Xt)dt+ σ(t,Xt)dW
(b,σ)
t , X0 = X0

where X0 ∈ L2(Ω) and (b, σ) ∈ L× L,

(ii) For all t ∈ (0, T ), Xt admits a density pt(·),
(iii) Setting aij = (σσ∗)ij, for all i ∈ {1, · · · , n}, t0 > 0,∫ T

t0

∫
Rd

∣∣∂j(aij(t, x)pt(x))
∣∣ dxdt < +∞,
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(iv) For all i, j, t,
∂j(a

ij(t, ·)pt(·))
pt(·)

∈ Lipschitz.

A diffusion verifying (i) will be called a (b, σ)-diffusion and we denote it by X(b,σ).

We denote by Λ1
v the closure of Vect(Λ1) in L1(Ω × [0, T ]) endowed with the usual norm

‖ · ‖ = E
∫
| · |.

We know that the reversed process of any element Λ1 is still a Brownian diffusion driven by

a Brownian motion Ŵ (b,σ) (cf [14], Theorem 2.3). We denote by P̂(b,σ) the natural filtration

associated to Ŵ (b,σ). Let P̂ be the filtration defined by: For all t ∈ [0,T ],

P̂t =
∨

(b,σ)∈L×L

P̂(b,σ)
t .

We finally consider the filtration F such that Ft = P̂T−t for all t ∈ [0,T ].

Proposition 1 (Definition of Nelson Stochastic derivatives)

Let X = Xb,σ ∈ Λ1 with aij = (σσ∗)ij and aj = (a1j , · · · , adj). For almost all t ∈ (0, T ),

the Nelson stochastic derivatives exist in L2(Ω) :

DXt : = lim
h→0+

E

[
Xt+h −Xt

h
| Pt
]

= b(t,Xt)(1)

D∗Xt : = lim
h→0+

E

[
Xt −Xt−h

h
| Ft

]
= b(t,Xt)−

1

pt(Xt)

∑
j

∂j(a
j(t,Xt)pt(Xt)).(2)

Therefore, for Xb,σ ∈ Λ1, there exists a measurable function b∗ such that D∗Xt = b∗(t,Xt).

We call it the left velocity field of X. It turns out to be an important objet for the sequel.

Also, this field is related to the drift of the time reversed process X through the following

identity:

(3) DX = b∗.

We denote by Λ2 = {X ∈ Λ1;DX, D∗X ∈ Λ1} and Λ2
v the closure of Vect(Λ2) in L1(Ω×

[0, T ]). We then define Λkv in an obvious way.

We denote by Dµ the stochastic derivative introduced in [1] and defined by

(4) Dµ =
D +D∗

2
+ µ

D −D∗
2

, µ ∈ {0,±1,±i}.

We can extend D by C-linearity to complex processes Λ1
C := Λ1

v ⊕ iΛ1
v.

Theorem 1. — Let X(b,σ) ∈ Λ1, a = σσ∗ and f ∈ C1,2(I × Rd) such that ∂tf , ∇f and ∂ijf

are bounded. We get:

(5) Dµf(t,X
(b,σ)
t ) =

∂tf +DX(b,σ)
t · ∇f +

µ

2

∑
k,j

akj∂kjf

 (t,X
(b,σ)
t ).
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We refer to [15] or ([5], Proposition 3,p.394) for a proof.

2.2. A notion of stochastic characteristics. — Following the general strategy of the

stochastic embedding formalism developed in [1], a natural idea is to replace the classical

curve s→ x(s) by a stochastic process s→ Xs and the classical derivative by the stochastic

derivative Dµ. We are then leaded to the following notion of stochastic characteristics :

Definition 2 (Stochastic characteristics). — We say that a stochastic process s → Xs

is a stochastic characteristic for a given PDE if the solution u(x, t) satisfies

Dµ (u(Xs, s)) = F (Xs, s),

and Xs satisfies an ordinary differential equation in Dµ.

Stochastic characteristics do not always exist. We will see on some examples that there

exist obstructions at least if we restrict our attention to specific class of stochastic processes

like diffusion processes. However, we introduce a second notion of stochastic characteris-

tics called time-reversal stochastic characteristics which can be found even when stochastic

characteristics do not exist.

Definition 3 (Time reversal stochastic characteristics). — We say that a stochastic

process s → Xs is a time reversal stochastic characteristic for a given PDE if the solution

u(x, t) satisfies

Dµ (ū(Xs, s)) = F (Xs, s),

and Xs satisfies an ordinary differential equation in Dµ.

In the following Sections, we look for classical and time reversal stochastic characteristics

of the Burger’s equation and the Heat equation. In particular, we prove that they correspond

to critical points of an explicit stochastic Lagrangian system.

Remark 1. — The previous notion of stochastic characteristics for classical PDEs shares

no relations with the notion of stochastic introduced for example by N. V. Krylov and B.L.

Rozovskii in [11] for stochastic PDEs.

2.3. Searching for stochastic characteristic of PDEs. — By the Definition 2.2, a (Dµ)

stochastic characteristic of an homogeneous partial differential equation must satisfy

(6) Dµu(Xt, t) = 0,

for all solutions u(x, t) of the PDE.
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Assuming that the solution u belongs to C1,2(I × Rd) and using Theorem 5, equation (6)

is equivalent to

(7) Dµu(t,X
(b,σ)
t ) =

∂tu+DµX(b,σ)
t · ∇u+

µ

2

∑
k,j

akj∂kju

 (t,X
(b,σ)
t ).

In order to simplify this expression we restrict our attention to stochastic characteristics

belonging to the set of diffusion processes with constant diffusion. Precisely, we introduce the

following space :

Definition 4. — We denote by Λ2
c the set of stochastic processes composed of all the diffu-

sions X(b,σ) such that σ = c is constant and the drift b is C2, bounded with all its second

derivatives bounded, and ∇ log ρt has bounded second order derivatives.

We can prove that Λ2
c ⊂ Λ2 thanks to Prop. 2 p.394 in [5]. Recall that a (u, σ)-diffusion

with a constant diffusion coefficient σ is of the form:

(8) Xt = X0 +

∫ t

0
b(s,Xs)ds+ σWt.

As a consequence, the previous formula for stochastic characteristics over Λ2
c is given by

(9) Dµu(t,X
(b,σ)
t ) =

(
∂tu+DµX(b,σ)

t · ∇u+
µ

2
σ2∇u

)
(t,X

(b,σ)
t ).

The main problem is now to identify the subset of Λ2
c which corresponds to stochastic

characteristic for a given homogeneous PDE.

In the time reversal case, we obtain the same formula replacing u by ū :

(10) Dµū(t,X
(b,σ)
t ) =

(
∂tū+DµX(b,σ)

t · ∇ū+
µ

2
σ2∇ū

)
(t,X

(b,σ)
t ).

The following sections are devoted to finding (time reversal) stochastic characteristic for

the Burger’s equation and the Heat equation.

3. Application to parabolic and mixed-type PDEs

In this section, we search for (time reversal) stochastic characteristics of parabolic and

mixed-type PDEs. As an example of mixed-type and parabolic PDEs, we consider the

Burger’s equation and the Heat equation respectively for which we give an explicit char-

acterization of the (time reversal) stochastic characteristics.
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3.1. The Burger’s equation. — The Burger’s equation can be written as

(11) ∂tu+ (u · ∇)u = ν∆u,

where u : [0, T ]× Rd → Rd is the velocity field and ν > 0 is the viscosity.

3.1.1. Stochastic characteristics. — Using the formula (9), it is easy to find a class of stochas-

tic processes in Λ2
c which are stochastic characteristic of the Burgers’s equation. Indeed, let

us assumes that a (b, σ) diffusion of Λ2
c satisfies the following conditions

(12)

{
DµX(b,σ)

t = u(t,Xt),
µ
2σ

2 = −ν,
then it is a stochastic characteristic of the Burger’s equation.

The existence of such processes depends on the value of µ as already seen by the second

condition of (12). Indeed, we must have

(13) µ < 0,

in order to satisfy (12). We then obtain the following lemma :

Lemma 1. — A Dµ stochastic characteristic of the Burger’s equation exists if and only if

µ = −1, i.e. D−1 = D∗.

We assume now that µ = −1. The second condition of (12) fixes the value of the constant

diffusion coefficient σ to be

(14) σ = ±
√

2ν.

Remark 2. — It must be pointed out that the previous obstruction is not valid when ν = 0.

In this case of course, we can consider µ = 1 and deterministic processes Xt ∈ Λ2
c of the form

(15) Xt = X0 +

∫ t

0
u(s,Xs) ds.

We then recover the classical definition of characteristic for a PDE. The Burger’s equation

reduces to the inviscid Burger’s equation which is a simple example of a non linear hyperbolic

PDE. For this equation, the classical method of characteristic can be applied.

Remark 3. — Another possibility which we have not explored is to take µ = 1 and to con-

sider a complex diffusion coefficient. The notion of complex diffusion has been used in the

literature for rigorous foundations of the Feynmann Paths Integrals and several approaches to

Lagrangian variational formulation of the Schrödinger equation. Nevertheless, we have not

find a satisfying place where such a notion is mathematically well defined. The second problem

is to interpret the complex diffusion coefficient.
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We can solve the first equation of (12) using the formula (2) for a diffusion process Xt ∈ Λ2
c

and µ = −1. We have

(16) D∗Xt = b(t,Xt)− σ2∇pt
pt

(Xt).

As D∗Xt = u(t,Xt), we obtain

(17) b(t,Xt) = u(t,Xt) + σ2∇pt
pt

(Xt).

We then have the following theorem :

Theorem 2 (Stochastic characteristics of the Burger’s equation)

The stochastic characteristics Xt ∈ Λ2
c of the Burger’s equation are of the form

(18) Xt = X0 +

∫ t

0

(
u(s,Xs) + σ2∇ps

ps
(Xs)

)
ds+

√
2νdWt,

where u is a solution of the Burger’s equation.

This result is not satisfying because the definition of the drift does not only depend on u

but also on the probability density pt of the process. The density is also linked with the drift

via the Fokker-Planck equation leading to a difficult system of partial differential equations.

In the next Section, we then consider time reversal stochastic characteristics which are more

simply characterized.

3.1.2. Time reversal stochastic characteristics. — We first rewrite the Burger’s equation in

term of ū. A simple computation leads to

(19) ∂tū+ ū · ∇ū+ ν∆ū = 0.

Let Xt ∈ Λ2
c be a (b, σ) diffusion satisfying the following conditions

(20)

{
DµX(b,σ)

t = ū(t,Xt),
µ
2σ

2 = ν.

Then it is a time-reversal stochastic characteristic of the Burger’s equation.

The existence of such processes depends on the value of µ as already seen by the second

condition of (20). Indeed, we must have

(21) µ > 0,

in order to satisfy (20). We then obtain the following lemma :

Lemma 2. — A Dµ time reversal stochastic characteristic of the Burger’s equation exists if

and only if µ = 1, i.e. D1 = D.
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We assume now that µ = 1. The second condition of (20) fixes the value of the constant

diffusion coefficient σ to be

(22) σ = ±
√

2ν.

The first condition of (20) fixes the drift part of the time reversal stochastic characteristic to

be ū. We then obtain the following Theorem.

Theorem 3. — [Time reversal stochastic characteristics for the Burger’s equation] Time

reversal stochastic characteristic Xt ∈ Λ2
c of the Burger’s equation are given by

(23) Xt = X0 +

∫ t

0
ū(s,Xs)ds+

√
2νWt,

where u is a solution of the Burger’s equation.

The viscosity coefficient plays an important role in this result as it controls the diffusion

coefficient of the stochastic process. In particular, for the inviscid Burger’s equation corre-

sponding to ν = 0, the time reversal stochastic processes reduce to deterministic processes

and then to classical characteristic.

Of course, one is interested in a more intrinsic characterization of the time-reversal stochas-

tic characteristics. We prove in the next section that they correspond to critical point of an

explicit stochastic Lagrangian functional in the sense of [1].

3.2. The Heat equation. — The Heat equation is a very simple parabolic PDE given by

(24) ∂tu− ν∆u = 0,

where the viscosity coefficient ν > 0.

As in the previous Section, we can search for (time reversal) stochastic characteristics of

the Heat equation.

We consider stochastic processes of the form:

(25) Xt = X0 + σBt,

where Bt is a Brownian bridge pinned to be 0 at T .

Applying the stochastic derivative Dµ, we obtain

(26) Dµu(t, σBt) =

(
∂tu+ σDµBt.∇u+ µ

σ2

2
∆u

)
(t, σBt).
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In order to have −ν in front of the Laplacian of u, we take

(27) µ = −1, σ =
√

2ν.

A good property of the Brownian Bridge is that it satisfies

(28) D∗Bt = 0.

As a consequence, we have the following solution for the stochastic characteristics of the

Heat equation :

Theorem 4. — The family of stochastic processes (25) provides stochastic characteristics for

the Heat equation.

The situation is then completely different than for the Burgers equation. The underlying

set of stochastic characteristics has no connections with the time reversal stochastic char-

acteristics of the Burgers equation. The fact to remove the convection term in the Burgers

equation has strong consequences on the structure of the set of solutions. This is a well

known phenomenon in PDEs. We refer in particular to [19] for an interesting study of this

phenomenon for the Navier-Stokes equation.

Remark 4. — The Burger’s equation and the Heat equation are related by the well known

Hopf-Cole transformation (see [12],[2]). It can be interesting to look for the behaviour of the

set of stochastic characteristics with respect to this transformation.

4. Stochastic characteristics and stochastic Lagrangian systems

In this Section, we give an alternative characterization of (time reversal) stochastic char-

acteristics obtain for the Burger’s and the Heat equation in term of stochastic Lagrangian

systems.

4.1. Reminder about stochastic Lagrangian systems. — We follow our previous work

[1] to which we refer for complete proofs (see also the work of K. Yasue [16]).

A stochastic Lagrangian functional is defined as follow.

Definition 5. — Let L be an admissible Lagrangian function. Set

Ξ =

{
X ∈ Λ1, E

[∫ T

0
|L(Xt,DµXt)|dt

]
<∞

}
.

The functional associated to L is defined by

(29) F :


Ξ −→ C

X 7−→ E

[∫ T

0
L(Xt,DµXt)dt

]
.
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In what follows, we need a special notion which we will call L-adaptation:

Definition 6. — Let L be an admissible Lagrangian function. A process X ∈ Λ1 is said to

be L-adapted if:

(i) X ∈ Ξ;

(ii) For all t ∈ I, ∂xL(Xt,DµXt) ∈ L2(Ω);

(iii) ∂vL(Xt,DµXt) ∈ Λ1.

The set of all L−adapted processes will be denoted by L.

We introduce the following terminology:

Definition 7. — Let Γ be a subspace of Λ1 and X ∈ Λ1. A Γ-variation of X is a stochastic

process of the form X + Z, where Z ∈ Γ. Moreover set

ΓΞ = {Z ∈ Γ,∀X ∈ Ξ, Z +X ∈ Ξ} .

We now define a notion of differentiable functional. Let Γ be a subspace of Λ1.

Definition 8. — Let L be an admissible Lagrangian function and F the associated func-

tional. The functional F is called Γ-differentiable at X ∈ L if for all Z ∈ ΓΞ

(30) F (X + Z)− F (X) = dF (X,Z) +R(X,Z),

where dF (X,Z) is a linear functional of Z ∈ ΓΞ and R(X,Z) = o(‖ Z ‖).
A Γ-critical process for the functional F is a stochastic process X ∈ Ξ ∩ L such that

dF (X,Z) = 0 for all Z ∈ ΓΞ such that Z(a) = Z(b) = 0.

The main result of [1] is the following analogue of the least-action principle for Lagrangian

mechanics.

Theorem 5 (Global Least action principle). — Let L be an admissible lagrangian with

all second derivatives bounded. A necessary and sufficient condition for a process X ∈ L∩Λ3

to be a Λ1-critical process of the associated functional F is that it satisfies

∂L

∂x
(Xt,DµXt)−D−µ

[
∂L

∂v
(Xt,DµXt)

]
= 0.(31)

We call this equation the Global Stochastic Euler-Lagrange equation (GSEL).

We refer to ([1], Theorem 3.1, p.33-34) for a proof.
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The main drawback of Theorem 5 is that equation (31) is not coherent (see [1],§.6.2) i.e.

that it does not coincide with the direct stochastic embedding of the classical Euler-Lagrange

equation of the form

∂L

∂x
(Xt,DµXt)−Dµ

[
∂L

∂v
(Xt,DµXt)

]
= 0.(32)

except when µ = 0.

In order to obtain a coherent embedding without imposing µ = 0, we must restrict the set

of variations. Let us introduce the space of Nelson differentiable processes:

(33) N1 = {X ∈ Λ1, DX = D∗X}.

Remark 5. — The most simple examples of Nelson’s differentiable processes are given by

differentiable deterministic processes (see [1],§.3.2.2.1). A more involved one is provided by

the solution of the stochastic harmonic oscillator defined by the system

(34)

 dX(t) = V (t)dt,
dV (t) = −αV (t)dt− ω2X(t)dt+ σdWt,
X(0) = X0, V (0) = V0.

In this case, we have (see [1],§.3.2.2.2) that DXt = D∗Xt = V (t).

More involved examples are provided by solutions of stochastic differential equations driven

by a fractional Brownian motion with a Hurst index H > 1/2 (see [6], Theorem 20).

Using N1-variations we have been able to prove the following result [1]:

Proposition 2. — Let L be an admissible lagrangian with all second derivatives bounded. A

solution of the equation

∂L

∂x
(Xt,DµXt)−Dµ

[
∂L

∂v
(Xt,DµXt)

]
= 0,(35)

called the Stochastic Euler-Lagrange Equation (SEL), is a N1-critical process for the functional

F associated to L.

We refer to ([1], Lemma 3.4, p.34) for a proof.

We have not been able to prove the converse of this lemma for N1-variations.

4.2. Lagrangian stochastic characteristics. — In this Section, we consider the La-

grangian

(36) L(t, x, v) =
v2

2
.
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The associated stochastic Lagrangian functional is given by

(37) L(Xt) = E

[∫ b

a

1

2
(DµXs)

2 ds

]
.

4.2.1. Lagrangian stochastic characteristics. — Applying Theorem 5, a (b, σ)-diffusion Xt is

a critical point of the natural Lagrangian (36) for full variations, if and only if it is a critical

point of the Lagrangian (36), i.e.

(38) D−µ (DµXt) = 0.

Definition 9. — A (time reversal) stochastic characteristic Xt satisfying equation (38) is

called a Lagrangian (time reversal) stochastic characteristic.

As a consequence, a D−µ stochastic characteristic Xt (resp. time reversal stochastic char-

acteristic) of a given homogeneous PDE is also a critical point of the stochastic Lagrangian

functional (37) if it satisfies

(39) DµXt = ±u(t,Xt), (resp. DµXt = ±ū(t,Xt) ) ,

where u is a solution of the PDE.

A stochastic characteristic (resp. time reversal stochastic characteristic) must satisfy some

particular constraints like conditions (9) (resp. conditions (20)) for the Burger’s equation in

order to correspond to a critical point of a stochastic Lagrangian functional. We will see in the

following Section that the resulting system of equations does not always possess a solution.

4.2.2. Weak Lagrangian stochastic chracteristics. — Applying Proposition 2, a (b, σ)-

diffusion Xt solution of the equation

(40) Dµ (DµXt) = 0.

is a weak critical point of the natural Lagrangian (36).

Definition 10. — A (time reversal) stochastic characteristic Xt satisfying equation (40) is

called a weak Lagrangian (time reversal) stochastic characteristic.

We will see in the next Section that some stochastic characteristics of PDEs can be weak

Lagrangian but not a Lagrangian one.

A Dµ weak stochastic characteristic Xt (resp. weak time reversal stochastic characteristic)

of a given homogeneous PDE is also a critical point of the stochastic Lagrangian functional

(37) if it satisfies condition (39).

4.3. Lagrangian stochastic characteristics of the Burger’s equation. —
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4.3.1. Stochastic characteristics. — Using conditions (12), the Lagrangian stochastic char-

acteristics of the Burger’s equation must satisfy the following system

(41)
D∗Xt = u(t,Xt),
DXt = ±u(t,Xt).

We have two cases :

– If DXt = u(t,Xt) then DXt = D∗Xt and Xt is Nelson differentiable process in the sense

of [1]. By ([1], Lemma 1.9, p.20) and the fact that Xt ∈ Λ2
c i.e. has a constant diffusion

coefficient, we conclude that Xt can not exist.

– If DXt = −u(t,Xt) then DXt = −D∗Xt. Following the work of S. Darses and I. Nourdin

[5] this impose strong constraints on the drift coefficient (see [5], Proposition 4, p. 396

in the case of a homogeneous drift).

4.3.2. Time reversal stochastic characteristics. — Using conditions (20), the Lagrangian time

reversal stochastic characteristics of the Burger’s equation must satisfy the following system

(42)
DXt = ū(t,Xt),
D∗Xt = ±ū(t,Xt).

We have the same conclusions as in the previous Section.

4.4. Weak Lagrangian stochastic characteristics of the Burger’s equation. —

4.4.1. Weak Lagrangian stochastic characteristics. — Following Lemma 1 Weak Lagrangian

stochastic characteristics of the Burger’s equation satisfy

(43) D∗Xt = ±u(t,Xt),

which is indeed the case as D∗Xt = u(t,Xt) be Theorem 2.

Theorem 6. — Weak stochastic characteristics of the Burger’s equation given by Theorem

2 are weak Lagrangian time reversal stochastic characteristics.

4.4.2. Weak Lagrangian time reversal stochastic characteristics. — Following Lemma 2 a

weak Lagrangian time reversal stochastic characteristic must satisfy the following system

(44) DXt = ±ū(t,Xt),

which is indeed the case as DXt = u(t,Xt) by Theorem 3. We then have :

Theorem 7. — Weak time reversal stochastic characteristics of the Burger’s equation given

by Theorem 3 are weak Lagrangian time reversal stochastic characteristics.
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4.5. Lagrangian stochastic characteristics of the Heat equation. — As for the ex-

istence of stochastic characteristics, we obtain a stronger result concerning the Lagrangian

structure of the solutions.

Theorem 8. — Let Xt be a process of the form:

(45) dXt = u(t,
√

2νBt)dt.

The velocity field u satisfies the Heat equation if and only if the stochastic process Xt is a Λ1

critical process of the stochastic functional

(46) X 7→ E

[∫ T

0
L(
√

2νBt, DXt)dt

]
where L(x, v) =

v2

2
.

Proof. — The Λ1 least action principle reads:

D∗DXt = 0.

But

(47) D∗DXt =
(
∂tu+

√
2ν (∂xu)D∗Bt − ν∆u

)
(t,
√

2νBt).

Since D∗B = 0 and the probability density of the bridge is everywhere positive, we can deduce

the desired equivalence.

Remark 6. — This result is stronger than the previous result on weak Lagrangian (time

reversal) stochastic characteristics of the Burgers equation as we have a complete equivalence

through the global least action principle.

5. Conclusion and perspectives

The notion of stochastic characteristics introduced in this paper cover parabolic and mixed

type PDEs. The previous approach and results can be developed in the following directions :

– Although we have obtain a characterization of the stochastic characteristics for the

Burger’s equation as (weak) critical points of an explicit stochastic Lagrangian func-

tional, we have not been able to prove the existence of such processes directly from the

stochastic equation. The results and tools developed by A. Cruzeiro and E. Sharmarova

in ([3],[4]) can provide a way to solve this problem.

– The classical characteristics method allows to reconstruct the solutions of the PDE

knowing the characteristics. The same strategy must be develop in our setting in order

to see if one can reconstruct the (classical) solutions of the PDE from the stochastic

characteristics.
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– The restriction on the class of PDEs that we can study in this paper is largely due to

the use of the Nelson’s stochastic derivatives. A more general theory can probably be

developed using for example the notion of stochastic derivatives for fractional diffusions

defined by S. Darses and I. Nourdin in [6] for which many computations can again be

made (see [7]). As a more abstract level, one can also use the notion of differentiating

sigma-fields introduced by S. Darses, I. Nourdin and G. Peccati in [8].
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