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Abstract. — We derive the discrete version of the classical Helmholtz condition. Precisely,
we state a theorem characterizing second order finite differences equations (see Definition 1)
admitting a Lagrangian formulation. Moreover, in the affirmative case, we provide the class of
all possible Lagrangian formulations.
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1. Introduction

A classical problem in Analysis is the well-known Helmholtz’s inverse problem of the calculus
of variations (see [6, p.71], [8] and [13, p.377]): find a necessary and sufficient condition
under which a (system of) differential equation(s) can be written as an Euler-Lagrange
equation and, in the affirmative case, find all the possible Lagrangian formulations.

This problem has been studied by numerous authors and has been completely solved by
A. Mayer [12] and A. Hirsch [9, 10]. The formulation that we use is due to V. Volterra
[14]. Precisely, let O be a second order differential operator. Then, the differential equation
O(q) = 0 can be written as a second order Euler-Lagrange equation if and only if all the
Frechet derivatives of O are self-adjoint. This condition is usually called Helmholtz condition.
We refer to [13] for a modern presentation and a complete proof of this theorem.

A more difficult problem is to deduce from this characterization a complete classification of
second order differential equations admitting a variational formulation. This has been only
solved in dimension three by J. Douglas in his seminal paper [6] following a previous work of
D.R. Davis [4, 5]. We refer to [6, p.74-75] and [13, p.377-379] for a historical survey.

In recent years, an increasing activity has been devoted to a discrete version of the calculus of
variations in the context of the geometric numerical integration. We refer to the book [7] and
the review paper [11] for more details. In this context, a second order discrete Euler-Lagrange
equation is given by:

∂L−

∂x
(Q,∆−Q,T , h) +

∂L+

∂x
(Q,−∆+Q,T , h)

+ ∆+

(

∂L−

∂v
(Q,∆−Q,T , h)

)

−∆−

(

∂L+

∂v
(Q,−∆+Q,T , h)

)

= 0, (1)

for a given couple of Lagrangian (L−, L+) and where T is a bounded regular partition of R
associated to the step size of discretization h. ∆− (resp. ∆+) is the backward (resp. forward)
finite differences operator associated to T .

In this framework, we formulate the Helmholt’z inverse problem of the discrete calculus of
variations as follows: find a necessary and sufficient condition under which a second order
finite differences equation (see Definition 1) can be written as a second order discrete Euler-
Lagrange equation and, in the affirmative case, find all the possible Lagrangian formulations.

This problem has been studied by numerous authors. We refer in particular to the work of
Albu-Opris [1] and Cracium-Opris [3]. However, in each of these papers, the structure of
the proof follows a different scheme than the continuous case and does not allow to make
comparisons. Moreover, we enlarge these studies by taking account of non autonomous finite
differences equations.
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2. Second order finite differences equations

2.1. Partitions and finite differences operators. — In the whole paper, let us consider
the following set:

T := {T = (tp)p=0,...,N ∈ R
N+1 with N ≥ 4 and ∃h > 0, ∀i = 0, ..., N −1, ti+1− ti = h}. (2)

T is a set of bounded regular partitions T of R. Hence, for any partition T ∈ T, an integer
N = card(T ) ≥ 4 and a step size of discretization h > 0 are associated. Consequently, for
any T ∈ T, we can also associate the following finite differences operators:

∆− : R
N+1 −→ R

N

Q 7−→

(

Qp −Qp−1

h

)

p=1,...,N

(3)

and
∆+ : R

N+1 −→ R
N

Q 7−→

(

Qp −Qp+1

h

)

p=0,...,N−1

.

(4)

Let us note that ∆− (resp. −∆+) is the classical backward (resp. forward) Euler approxi-
mation of the derivative operator d/dt. Moreover, ∆− and −∆+ commute and the discrete
operator −∆+ ◦∆− corresponds to the classical centered approximation of d2/dt2.

Let us remark that all these previous discrete elements depend on T ∈ T. For the reader’s
convenience, we omit this dependence in the notations.

In this paper, we are going to be interested in the discretization of differential equations
defined on real intervals [a, b]. Hence, for any reals a < b, we introduce the following set:

Ta,b := {T ∈ T with 0 ≤ t0 − a < h and 0 ≤ b− tN < h}. (5)

For any reals a < b, Ta,b is then a set of regular partitions T of the interval [a, b].

2.2. Second order finite differences equations. — In the whole paper, let us note that
we consider sufficiently smooth elements in order to make valid all the computations. The
elements concerned are denoted by O, P , L, L− and L+.

In the continuous case, a second order differential equation on an interval [a, b] is defined by
Oa,b(q) = 0 where O is a second order differential operator, i.e.:

O : a < b 7−→ Oa,b : C 2([a, b],R) −→ C 0([a, b],R)
q 7−→ Oa,b(q)

(6)

with:
Oa,b(q) : [a, b] −→ R

t 7−→ Oa,b(q)(t) = O
(

q(t), q̇(t), q̈(t), t
)

(7)

where q̇ (resp. q̈) is the first (resp. second) derivative of q and where:

O : R
4 −→ R

(x, v, w, t) 7−→ O(x, v, w, t).
(8)

Hence, a second order differential equation (independently of the interval [a, b]) is entirely
determined by the application O. Let us give the following discrete analogous definition:
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Definition 1. — A second order finite differences equation, associated to a partition T ∈ T,
is defined by PT (Q) = 0 where P is a second order finite differences operator, i.e.:

P : T ∈ T 7−→ PT : R
N+1 −→ R

N−1

Q 7−→ PT (Q) =
(

PT

p (Q)
)

p=1,...,N−1

(9)

where

∀p = 1, ..., N − 1, PT

p (Q) = P
(

Qp, (∆−Q)p, (−∆+Q)p, (−∆+ ◦∆−Q)p, tp, h
)

(10)

and where
P : R

5 × R
+
∗ −→ R

(x, v−, v+, w, t, ξ) 7−→ P (x, v−, v+, w, t, ξ).
(11)

A second order finite differences equation (independently of the partition T ∈ T) is then
entirely determined by the application P .

Let us consider a second order differential equation Oa,b(q) = 0 on an interval [a, b]. Then,
a usual algebraic way in order to provide a discretization of this equation is to consider a
partition T ∈ Ta,b and to define:

P : R
5 × R

+
∗ −→ R

(x, v−, v+, w, t, ξ) 7−→ O
(

x, (1 − λ)v− + λv+, w, t
)

(12)

with λ ∈ [0, 1]. Hence, we obtain the numerical scheme PT (Q) = 0. The parameter λ
allows to choose for example the backward (λ = 0), centered (λ = 1/2) or forward (λ = 1)
approximation of the derivative d/dt. Such a discretization of Oa,b(q) = 0 is said to be a
direct discretization.

Example 1. — Let us consider the Newton’s equation with friction q + q̇ + q̈ = 0 defined
on a real interval [a, b]. It is a second order differential equation associated to O(x, v, w, t) =
x + v + w. Hence, considering λ = 1/2 and a partition T ∈ Ta,b, we obtain by direct
discretization the following numerical scheme:

∀p = 1, ..., N − 1, Qp +
Qp+1 −Qp−1

2h
+

Qp+1 − 2Qp +Qp−1

h2
= 0. (13)

3. Formulation of the discrete version of the Helmholtz problem for second
order finite differences equations

3.1. Reminder about the classical Helmholtz result for second order differential
equations. — A continuous Lagrangian system derives from a variational principle. Pre-
cisely, let us consider two reals a < b and the following Lagrangian functional:

L a,b : C 2([a, b],R) −→ R

q 7−→

∫ b

a

L(q, q̇, t) dt,

(14)

where L is a Lagrangian, i.e. an application of the type:

L : R
3 −→ R

(x, v, t) 7−→ L(x, v, t).
(15)

Let C 2
0 ([a, b],R) := {w ∈ C 2([a, b],R), w(a) = w(b) = 0} denote the set of variations.

Then, q ∈ C 2([a, b],R) is said to be a critical point of L a,b if for any variation w, we have
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DL a,b(q)(w) = 0. A calculus of variations allows to characterize the critical points of L a,b

as the solutions on [a, b] of the following second order Euler-Lagrange equation:

∂L

∂x
(q, q̇, t)−

d

dt

(

∂L

∂v
(q, q̇, t)

)

= 0. (ELa,b)

A dynamical system governed by such an Euler-Lagrange equation is called second order La-
grangian system. We refer to [2, p.55-57] for more details concerning continuous Lagrangian
systems.

The classical Helmholtz result is the following. Let O be a second order differential operator.
The second order differential equation associated can be written as a second order Euler-
Lagrange equation if and only if O satisfies the Helmholtz condition frequently given as the
self-adjointness of all the Frechet derivatives of Oa,b for any reals a < b. We refer to [13] for
more details. Nevertheless, the Helmholtz condition can be more explicitly formulated: O
satisfies the Helmholtz condition if and only if

∀a < b, ∀q ∈ C
2([a, b],R),

d

dt

(

∂O

∂w
(q, q̇, q̈, t)

)

=
∂O

∂v
(q, q̇, q̈, t). (Hcont)

3.2. Second order discrete Euler-Lagrange equations. — Let us give the discrete
analogous definitions and results of the previous section:

Definition 2. — A discrete Lagrangian functional, associated to a partition T ∈ T, is de-
fined by:

L T : R
N+1 −→ R

Q 7−→ h

N
∑

p=1

L−

(

Qp, (∆−Q)p, tp, h
)

+ h

N−1
∑

p=0

L+

(

Qp, (−∆+Q)p, tp, h
)

,

(16)

where (L−, L+) is a couple of Lagrangian, i.e. L± are applications of the type:

L± : R
3 × R

+
∗ −→ R

(x, v, t, ξ) 7−→ L±(x, v, t, ξ).
(17)

Let R
N+1
0 := {W ∈ R

N+1, W0 = WN = 0} denote the set of discrete variations. Then,
Q ∈ R

N+1 is said to be a discrete critical point of L T if for any discrete variation W , we
have DL T (Q)(W ) = 0.

A discrete calculus of variations allows to characterize the discrete critical points of L T :

Theorem 3. — Let (L−, L+) be a couple of Lagrangian and T ∈ T. Let L T be the discrete
Lagrangian functional associated. Then, Q ∈ R

N+1 is a discrete critical point of L T if and
only if Q is solution of the following second order discrete Euler-Lagrange equation:

∂L−

∂x
(Q,∆−Q,T , h) +

∂L+

∂x
(Q,−∆+Q,T , h)

+ ∆+

(

∂L−

∂v
(Q,∆−Q,T , h)

)

−∆−

(

∂L+

∂v
(Q,−∆+Q,T , h)

)

= 0. (ELT )

A discrete dynamical system governed by such a discrete Euler-Lagrange equation is called
second order discrete Lagrangian system.
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Proof. — Let Q ∈ R
N+1 and W ∈ R

N+1
0 . We have:

DL
T (Q)(W ) = h

N
∑

p=1

[

∂L−

∂x
(∗p)Wp +

∂L−

∂v
(∗p)(∆−W )p

]

+ h

N−1
∑

p=0

[

∂L+

∂x
(∗∗p)Wp +

∂L+

∂v
(∗∗p)(−∆+W )p

]

(18)

where ∗ := (Q,∆−Q,T , h) and ∗∗ := (Q,−∆+Q,T , h). Let us remind the following discrete

integrations by part. For any (F ,G) ∈ R
N+1 × R

N+1
0 , we have:

N
∑

p=1

Fp(∆−G)p =

N−1
∑

p=1

(∆+F )pGp and

N−1
∑

p=0

Fp(∆+G)p =

N−1
∑

p=1

(∆−F )pGp. (19)

Finally, combining (18) and (19), we obtain:

DL
T (Q)(W ) = h

N−1
∑

p=1

[

∂L−

∂x
(∗p) +

∂L+

∂x
(∗∗p) + ∆+

(

∂L−

∂v
(∗)

)

p

−∆−

(

∂L+

∂v
(∗∗)

)

p

]

Wp,

(20)
which concludes the proof.

Let us consider an Euler-Lagrange equation (ELa,b) defined on a real interval [a, b] and L
the Lagrangian associated. Let us take for example L−(x, v, t, ξ) = L(x, v, t) and L+ = 0.
Considering a partition T ∈ Ta,b, we obtain that L T is a discrete version of L a,b and

(ELT ) is obtained by discrete variational principle on L T . Such a method leads (ELT ) to be
called variational integrator : it is a numerical scheme for (ELa,b) having the particularity of
preserving its intrinsic Lagrangian structure at the discrete level. We refer to [7, 11] for more
details concerning the variational integrators. Let us note that one can also use a centered
version by taking L−(x, v, t, ξ) = L+(x, v, t, ξ) = L(x, v, t)/2.

Example 2. — Let us consider the Newton’s equation without friction q+ q̈ = 0 defined on a
real interval [a, b]. It is a second order differential equation associated to O(x, v, w, t) = x+w
satisfying the continuous Helmholtz condition (Hcont). It corresponds to (ELa,b) with the
quadratic Lagrangian L(x, v, t) = (x2 − v2)/2. Considering a partition T ∈ Ta,b, taking
L−(x, v, t, ξ) = L(x, v, t) and L+ = 0, we obtain the following discrete Euler-Lagrange equa-
tion:

∀p = 1, ..., N − 1, Qp +
Qp+1 − 2Qp +Qp−1

h2
= 0. (21)

Let us note that (21) coincides with a direct discretization. Nevertheless, a direct discretization
of an Euler-Lagrange equation do not lead necessary to a discrete Euler-Lagrange equation,
see Example 4. In this case, we say that the Lagrangian structure is not preserved.

3.3. Formulation of the discrete Helmholtz problem for second order finite dif-
ferences equations. — Firstly, it is important to note that a second order discrete Euler-
Lagrange equation is a second order finite differences equation (in the sense of Definition
1):
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Proposition 4. — Let (L−, L+) be a couple of Lagrangian. Then, the discrete Euler-
Lagrange equation associated is a second order finite differences equation associated to:

P : R
5 × R

+
∗ −→ R

(x, v−, v+, w, t, ξ) 7−→
∑

i+j+k≥1

[

Ai,j,k(x, v−, t, ξ)v
i
+ +Bi,j,k(x, v+, t, ξ)v

i
−

]

wj

(22)

where

Ai,j,k(x, v, t, ξ) = δ(i,j,k)=(0,0,1)
∂L−

∂x
(x, v, t, ξ) −

ξi+j+k−1

i!j!k!

∂i+j+k+1L−

∂xi∂vj+1∂tk
(x, v, t, ξ) (23)

and where

Bi,j,k(x, v, t, ξ) = δ(i,j,k)=(0,0,1)
∂L+

∂x
(x, v, t, ξ) +

(−ξ)i+j+k−1

i!j!k!

∂i+j+k+1L+

∂xi∂vj+1∂tk
(x, v, t, ξ), (24)

where δ is the Kronecker symbol.

Proof. — We have just to take a partition T ∈ T and to develop ∂L−/∂v and ∂L+/∂v in
power series.

We finally formulate the following discrete version of the Helmholtz problem:

Discrete Helmholtz problem for second order finite differences equations: find a
necessary and sufficient condition under which a second order finite differences equation can
be written as a second order discrete Euler-Lagrange equation. Precisely, let P be a second
order finite differences operator. Our aim is to find a necessary and sufficient condition on
P under which there exists a couple of Lagrangian (L−, L+) such that for any T ∈ T and any
Q ∈ R

N+1, we have:

PT (Q) =
∂L−

∂x
(Q,∆−Q,T , h) +

∂L+

∂x
(Q,−∆+Q,T , h)

+ ∆+

(

∂L−

∂v
(Q,∆−Q,T , h)

)

−∆−

(

∂L+

∂v
(Q,−∆+Q,T , h)

)

. (25)

4. Solution of the discrete Helmholtz problem for second order finite differences
equations

Theorem 5. — Let P be a second order finite differences operator. Then, the second order
finite differences equation associated can be written as a second order discrete Euler-Lagrange
equation if and only if P satisfies the following discrete Helmholtz condition:

∀T ∈ T, ∀Q ∈ R
N+1, ∀p = 2, ..., N − 1, ∆−

(

∂P

∂w
(⋆)

)

p

=
∂P

∂v−
(⋆p) +

∂P

∂v+
(⋆p−1), (Hdisc)

where ⋆ :=
(

Q,∆−Q, (−∆+Q), (−∆− ◦∆−Q),T , h
)

.

Proof. — See Sections 5 and 6.

Let us note the similarity between the classical Helmholtz condition (Hcont) and its discrete
version (Hdisc). It is also important to note that, similarly to the continuous case, the discrete
Helmholtz condition (Hdisc) corresponds to the self-adjointness of all the Frechet derivatives
of PT for any T ∈ T, see Section 5.
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Example 3. — Let us take the second order finite differences equation (21) obtained in Ex-
ample 2. It is associated to the application P (x, v−, v+, w, t, ξ) = x + w which satisfies the
discrete Helmholtz condition (Hdisc). It is expected because (21) is a discrete Euler-Lagrange
equation by construction.

Example 4. — Let us consider the differential equation q + sin(q̇)q̈ = 0 defined on a
real interval [a, b]. It is a second order differential equation associated to the applica-
tion O(x, v, w, t) = x + sin(v)w satisfying (Hcont). It corresponds to (ELa,b) associated
to the Lagrangian L(x, v, t) = (x2/2) + cos(v). Let us consider T ∈ Ta,b and define

P (x, v−, v+, w, t, ξ) = O
(

x, (1 − λ)v− + λv+, w, t
)

with λ ∈ [0, 1]. Then, we obtain by direct
discretization the following second order finite differences equation:

∀p = 1, ..., N − 1, Qp + sin

(

λQp+1 + (1− 2λ)Qp + (λ− 1)Qp−1

h

)

Qp+1 − 2Qp +Qp−1

h2
= 0.

(26)
Let P be the second order finite differences operator associated. Then, P does not satisfy
(Hdisc) and consequently (26) can not be written as a second order discrete Euler-Lagrange
equation. This is an example of direct discretization of an Euler-Lagrange equation not leading
to a discrete Euler-Lagrange equation. The numerical scheme (26) does not preserve the
Lagrangian structure of the differential equation at the discrete level.

5. Discrete Helmholtz condition and self-adjointness of Frechet derivatives of
second order finite differences operator

In this section, we prove that a second order differences operator P satisfies the discrete
Helmholtz condition (Hdisc) if and only if all the Frechet derivatives of PT are self-adjoint for
any T ∈ T.

5.1. Properties of the discrete derivative operators. — In this section, we first remind
the classical discrete versions of the integration by part and the Leibniz formula.

Lemma 6 (Discrete Leibniz formulas). — Let T ∈ T and Q, W ∈ R
N+1. Then, we

have:

∀p = 1, ..., N, (∆−QW )p = (∆−Q)pWp +Qp−1(∆−W )p (27)

and

∀p = 0, ..., N − 1, (∆+QW )p = (∆+Q)pWp +Qp+1(∆+W )p. (28)

Finally, for any p = 1, ..., N − 1, we have:

(−∆+ ◦∆−QW )p = (−∆+ ◦∆−Q)pWp +Qp(−∆+ ◦∆−W )p

+ (−∆+Q)p(−∆+W )p + (∆−Q)p(∆−W )p. (29)

For any T ∈ T, let us denote R
N+1
0,0 := {W ∈ R

N+1, W0 = W1 = WN−1 = WN = 0}.

Lemma 7 (Discrete integrations by part). — Let T ∈ T and (Q,W ) ∈ R
N+1 × R

N+1
0,0 .

Then, we have:

N−1
∑

p=1

Qp(∆−W )p =

N−2
∑

p=2

(∆+Q)pWp, and

N−1
∑

p=1

Qp(∆+W )p =

N−2
∑

p=2

(∆−Q)pWp. (30)



HELMHOLTZ’S INVERSE PROBLEM OF THE DISCRETE CALCULUS OF VARIATIONS 9

Finally, we have:

N−1
∑

p=1

Qp(−∆+ ◦∆−W )p =

N−2
∑

p=2

(−∆+ ◦∆−Q)pWp. (31)

5.2. Interpretation of the discrete Helmholtz condition as self-adjointness of
Frechet derivatives of second order finite differences operator. — Let us define
the following discrete version of the self-adjointness of a Frechet derivative for a differential
operator:

Definition 8. — Let P be a second order finite differences operator, T ∈ T and Q ∈ R
N+1.

We denote by DPT (Q) the Frechet derivative of PT at the point Q. Finally, we denote by
DPT (Q)∗ the adjoint of DPT (Q) defined by:

DPT (Q)∗ : R
N+1 −→ R

N−3

Z 7−→ DPT (Q)∗(Z) =
(

DPT

p (Q)∗(Z)
)

p=2,...,N−2

(32)

satisfying:

∀(W ,Z) ∈ R
N+1
0,0 × R

N+1, h
N−1
∑

p=1

DPT

p (Q)(W )Zp = h
N−2
∑

p=2

DPT

p (Q)∗(Z)Wp. (33)

Finally, DPT (Q) is said to be self-adjoint if for any p = 2, ..., N − 2, DPT
p (Q) = DPT

p (Q)∗.

First, a simple calculation leads to the following result:

Proposition 9. — Let P be a second order finite differences operator, T ∈ T and Q ∈ R
N+1.

Then, for any p = 1, ..., N − 1 and any W ∈ R
N+1, we have:

DPT

p (Q)(W ) =
∂P

∂x
(⋆p)Wp+

∂P

∂v−
(⋆p)(∆−W )p+

∂P

∂v+
(⋆p)(−∆+W )p+

∂P

∂w
(⋆p)(−∆+◦∆−W )p,

(34)
where ⋆ :=

(

Q,∆−Q, (−∆+Q), (−∆− ◦∆−Q),T , h
)

.

Then, applying Lemmas 6 and 7 in Proposition 9, we can give explicitly the adjoint of a
Frechet derivative:

Proposition 10. — Let P be a second order finite differences operator, T ∈ T and Q ∈
R
N+1. Then, for any p = 2, ..., N − 2 and any W ∈ R

N+1, DPT

p (Q)∗(W ) is equal to:
[

∂P

∂x
(⋆p)−

(

−∆+
∂P

∂v−
(⋆)

)

p

−

(

∆−

∂P

∂v+
(⋆)

)

p

+

(

−∆+ ◦∆−

∂P

∂w
(⋆)

)

p

]

Wp

+

[

(

∆−

∂P

∂w
(⋆)

)

p

−
∂P

∂v+
(⋆p−1)

]

(∆−W )p

+

[

(

−∆+
∂P

∂w
(⋆)

)

p

−
∂P

∂v−
(⋆p+1)

]

(−∆+W )p +
∂P

∂w
(⋆p)(−∆+ ◦∆−W )p,

(35)

where ⋆ :=
(

Q,∆−Q, (−∆+Q), (−∆− ◦∆−Q),T , h
)

.

The main result of this Section is the following explicit characterization of second order finite
differences operators P whose all Frechet derivatives are self-adjoint for any T ∈ T:
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Theorem 11. — Let P be a second order finite differences operator. Then, DPT (Q) is self
adjoint for any T ∈ T and any Q ∈ R

N+1 if and only if P satisfies the discrete Helmholtz
condition (Hdisc).

Proof. — Indeed, let T ∈ T and Q ∈ R
N+1. According to Proposition 10, we have DPT (Q)

is self adjoint if and only if the right term of (34) is equal to (35) for any W ∈ R
N+1 and any

p = 2, ..., N − 2. Consequently, DPT (Q) is self adjoint if and only for any p = 2, ..., N − 2,
the three following equalities hold:

(

−∆+ ◦∆−

∂P

∂w
(⋆)

)

p

−

(

−∆+
∂P

∂v−
(⋆)

)

p

−

(

∆−

∂P

∂v+
(⋆)

)

p

= 0, (36)

(

−∆+
∂P

∂w
(⋆)

)

p

−
∂P

∂v−
(⋆p+1) =

∂P

∂v+
(⋆p), (37)

(

∆−

∂P

∂w
(⋆)

)

p

−
∂P

∂v+
(⋆p−1) =

∂P

∂v−
(⋆p), (38)

if and only if for any p = 2, ..., N − 1:
(

∆−

∂P

∂w
(⋆)

)

p

=
∂P

∂v−
(⋆p) +

∂P

∂v+
(⋆p−1). (39)

The proof is completed.

6. Proof of Theorem 5

6.1. Sufficient condition. — Let P be a second order finite differences operator associated
to a second order discrete Euler-Lagrange equation. Let (L−, L+) denote the associated
couple of Lagrangian. According to Proposition 4, we have that P satisfies (22). With a
simple calculation, we can prove that for any T ∈ T, any Q ∈ R

N+1 and any p = 1, ..., N − 1,
the three following equalities hold:

∂P

∂w
(⋆p) = −

∂2L−

∂v2
(

Qp+1, (∆−Q)p+1, tp+1, h
)

−
∂2L+

∂v2
(

Qp−1, (−∆+Q)p−1, tp−1, h
)

, (40)

∂P

∂v−
(⋆p) =

∂2L−

∂x∂v

(

Qp, (∆−Q)p, tp, h
)

−
∂2L+

∂x∂v

(

Qp−1, (−∆+Q)p−1, tp−1, h
)

+∆+

(

∂2L−

∂v2
(Q,∆−Q,T , h)

)

p

(41)

∂P

∂v+
(⋆p) =

∂2L+

∂x∂v

(

Qp, (−∆+Q)p, tp, h
)

−
∂2L−

∂x∂v

(

Qp+1, (∆−Q)p+1, tp+1, h
)

−∆−

(

∂2L+

∂v2
(Q,−∆+Q,T , h)

)

p

, (42)

where ⋆ :=
(

Q,∆−Q, (−∆+Q), (−∆+ ◦∆−Q),T , h
)

. Finally, from these three equalities, we
prove that P satisfies the discrete Helmholtz condition (Hdisc).
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6.2. Necessary condition. — Let P be a second order finite differences operator satisfying
the discrete Helmholtz condition (Hdisc). The proof is based on the following proposition:

Proposition 12. — Let P be a second order finite differences operator satisfying the discrete
Helmholtz condition (Hdisc). Let L1 be the following augmented Lagrangian:

L1 : R
5 × R

+
∗ −→ R

(x, v−, v+, w, t, ξ) 7−→ x

∫ 1

0
P (λx, λv−, λv+, λw, t, ξ) dλ

(43)

and, for any T ∈ T, let L T

1 denote the following augmented Lagrangian functional

L T

1 : R
N+1 −→ R

Q 7−→ h

N−1
∑

p=1

L1

(

Qp, (∆−Q)p, (−∆+Q)p, (−∆+ ◦∆−Q)p, tp, h
)

.

(44)

Then,

1. for any T ∈ T and any (Q,W ) ∈ R
N+1 × R

N+1
0,0 , we have:

DL
T

1 (Q)(W ) = h

N−2
∑

p=2

PT

p (Q)Wp, (45)

2. there exists a couple of Lagrangian (L−, L+) such that for any T ∈ T, any Q ∈ R
N+1,

we have:

L1

(

Q,∆−Q, (−∆+Q), (−∆− ◦∆−Q),T , h
)

= L−

(

Q,∆−Q,T , h
)

+ L+

(

Q, (−∆+Q),T , h
)

. (46)

Proof. — 1. Let T ∈ T and (Q,W ) ∈ R
N+1 × R

N+1
0,0 . We have:

L
T

1 (Q) = h

N−1
∑

p=1

Qp

∫ 1

0
PT

p (λQ) dλ. (47)

Thus:

DL
T

1 (Q)(W ) = h

N−1
∑

p=1

Wp

∫ 1

0
PT

p (λQ) dλ+ h

N−1
∑

p=1

Qp

∫ 1

0
DPT

p (λQ)(λW ) dλ. (48)

As P satisfies the discrete Helmholtz condition (Hdisc) and according to Theorem 11,
DPT (λQ) is self-adjoint. Using Definition 8, the following equality holds:

h

N−1
∑

p=1

DPT

p (λQ)(λW )Qp = h

N−2
∑

p=2

λDPT

p (λQ)(Q)Wp. (49)

Then, from Equalities (48) and (49), we have

DL
T

1 (Q)(W ) = h

N−2
∑

p=2

Wp

∫ 1

0
PT

p (λQ) dλ+ h

N−2
∑

p=2

Wp

∫ 1

0
λDPT

p (λQ)(Q) dλ (50)
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Then, using ∂/∂λ
(

PT

p (λQ)
)

= DPT

p (λQ)(Q) and using an integration by part with respect
to λ on the second integral, we obtain:

DLT

1 (Q)(W ) = h

N−2
∑

p=2

PT

p (Q)Wp. (51)

2. Since P satisfies the discrete Helmholtz condition (Hdisc), we have for any T ∈ T and any
Q ∈ R

N+1:

∀p = 2, ..., N − 1,
1

h

(

∂P

∂w
(⋆p)−

∂P

∂w
(⋆p−1)

)

=
∂P

∂v−
(⋆p) +

∂P

∂v+
(⋆p−1), (52)

where ⋆ :=
(

Q,∆−Q, (−∆+Q), (−∆− ◦ ∆−Q),T , h
)

. As it is true for any Q ∈ R
N+1, we

can differentiate the previous equality with respect to Qp−2 and Qp+1. It leads to the two
following equalities holding for any T ∈ T, any Q ∈ R

N+1 and any p = 2, ..., N − 1:

1

h

(

1

h

∂2P

∂v−∂w
(⋆p−1)−

1

h2
∂2P

∂w2
(⋆p−1)

)

= −
1

h

∂2P

∂v−∂v+
(⋆p−1) +

1

h2
∂2P

∂w∂v+
(⋆p−1) (53)

and

1

h

(

1

h

∂2P

∂v+∂w
(⋆p) +

1

h2
∂2P

∂w2
(⋆p)

)

=
1

h

∂2P

∂v+∂v−
(⋆p) +

1

h2
∂2P

∂w∂v−
(⋆p). (54)

Finally, we have for any T ∈ T, any Q ∈ R
N+1 and any p = 1, ..., N − 1:

∂2P

∂v+∂v−
(⋆p) +

1

h

(

∂2P

∂w∂v−
(⋆p)−

∂2P

∂v+∂w
(⋆p)

)

+
1

h2
∂2P

∂w2
(⋆p) = 0. (55)

Hence, since Equality (55) is true for any T ∈ T, any Q ∈ R
N+1 and any p = 1, ..., N − 1, we

have for any (x, y, z, t, ξ) ∈ R
4 × R

+
∗ :

∂2P

∂v+∂v−

(

x, y, z,
z − y

ξ
, t, ξ

)

+
1

h2
∂2P

∂w2

(

x, y, z,
z − y

ξ
, t, ξ

)

+
1

h

(

∂2P

∂w∂v−

(

x, y, z,
z − y

ξ
, t, ξ

)

−
∂2P

∂v+∂w

(

x, y, z,
z − y

ξ
, t, ξ

)

)

= 0. (56)

Let us define:

ℓ : R
4 ×R

+
∗ −→ R

(x, y, z, t, ξ) 7−→ P
(

x, y, z,
z − y

ξ
, t, ξ

)

.

(57)

According to (56), we have:

∀(x, y, z, t, ξ) ∈ R
4 × R

+
∗ ,

∂2ℓ

∂z∂y
(x, y, z, t, ξ) = 0. (58)

Consequently, the variables y and z are separable in ℓ. Precisely, there exist two functions
α, β : R3 × R

+
∗ −→ R such that:

∀(x, y, z, t, ξ) ∈ R
4 ×R

+
∗ , ℓ(x, y, z, t, ξ) = α(x, y, t, ξ) + β(x, z, t, ξ). (59)
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Finally, we have for any T ∈ T, any Q ∈ R
N+1 and any p = 1, ..., N − 1:

L1(⋆p) = Qp

(
∫ 1

0
P
(

λQp, λ(∆−Q)p, λ(−∆+Q)p, λ(−∆+ ◦∆−Q)p, tp, h
)

dλ

)

(60)

= Qp

(
∫ 1

0
ℓ
(

λQp, λ(∆−Q)p, λ(−∆+Q)p, tp, h
)

dλ

)

(61)

= Qp

(
∫ 1

0
α
(

λQp, λ(∆−Q)p, tp, h
)

+ β
(

λQp, λ(−∆+Q)p, tp, h
)

dλ

)

(62)

= L−

(

Qp, (∆−Q)p, tp, h
)

+ L+

(

Qp, (−∆+Q)p, tp, h
)

, (63)

where:

L− : R
3 × R

+
∗ −→ R

(x, v, t, ξ) 7−→ x

∫ 1

0
α(λx, λv, t, ξ) dλ

(64)

and

L+ : R
3 × R

+
∗ −→ R

(x, v, t, ξ) 7−→ x

∫ 1

0
β(λx, λv, t, ξ) dλ.

(65)

The proof of Proposition 12 is now completed.

Now, from Proposition 12, we are going to prove Theorem 5. Precisely, let us define, for any
T ∈ T, the following discrete Lagrangian functional:

L T : R
N+1 −→ R

Q 7−→ h
N
∑

p=1

L−

(

Qp, (∆−Q)p, tp, h
)

+ h
N−1
∑

p=0

L+

(

Qp, (−∆+Q)p, tp, h
)

(66)

where (L−, L+) is the couple of Lagrangian given in the point 2 of Proposition 12. Then, we
have for any T ∈ T and any Q ∈ R

N+1:

L
T (Q) = L

T

1 (Q) + hL−

(

QN ,
QN −QN−1

h
, tN , h

)

+ hL+

(

Q0,
Q1 −Q0

h
, t0, h

)

, (67)

where L T

1 is defined in Proposition 12. Consequently, we have for any T ∈ T, any Q ∈ R
N+1

and any W ∈ R
N+1
0,0 :

DL
T (Q)(W ) = DL

T

1 (Q)(W ) = h

N−2
∑

p=2

PT

p (Q)Wp. (68)

However, using the same method than in the proof of Theorem 3, we prove from Equation
(66) that for any T ∈ T, any Q ∈ R

N+1 and any W ∈ R
N+1
0,0 :

DL
T (Q)(W ) = h

N−2
∑

p=2

[

∂L−

∂x
(∗p) +

∂L+

∂x
(∗∗p) + ∆+

(

∂L−

∂v
(∗)

)

p

−∆−

(

∂L+

∂v
(∗∗)

)

p

]

Wp,

(69)
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where ∗ := (Q,∆−Q,T , h) and ∗∗ := (Q,−∆+Q,T , h). Combining Equalities (68) and (69),
we conclude that for any T ∈ T, any Q ∈ R

N+1 and any p = 2, ..., N − 2:

PT

p (Q) =
∂L−

∂x
(∗p) +

∂L+

∂x
(∗∗p) + ∆+

(

∂L−

∂v
(∗)

)

p

−∆−

(

∂L+

∂v
(∗∗)

)

p

. (70)

In order to finish the proof of Theorem 5, we have just to prove that Equality (70) is still
true for p = 1 and p = N − 1. We only prove it for p = N − 1. The case p = 1 can be proved
in a similar way.

In this way, let us take T ∈ T and Q ∈ R
N+1. Let us denote σ(T ) = (tp+1)p=0,...,N ∈ T and

σ(Q) = (Qp+1)p=0,...,N ∈ R
N+1 where tN+1 := tN + h and QN+1 := 0. From Equality (70),

we have:

PT

N−1

(

Q
)

= P
σ(T )
N−2

(

σ(Q)
)

=
∂L−

∂x

(

σ(∗)N−2

)

+
∂L+

∂x

(

σ(∗∗)N−2

)

+∆+

(

∂L−

∂v

(

σ(∗)
)

)

N−2

−∆−

(

∂L+

∂v

(

σ(∗∗)
)

)

N−2

, (71)

where σ(∗) :=
(

σ(Q),∆−σ(Q), σ(T ), h
)

and σ(∗∗) :=
(

σ(Q),−∆+σ(Q), σ(T ), h
)

. Conse-
quently, we have:

PT

N−1

(

Q
)

=
∂L−

∂x
(∗N−1)+

∂L+

∂x
(∗∗N−1)+∆+

(

∂L−

∂v
(∗)

)

N−1

−∆−

(

∂L+

∂v
(∗∗)

)

N−1

. (72)

The proof of Theorem 5 is completed.

7. Characterization of the null (couples of) Lagrangian

In this section, we are interested in the second part of the Helmholtz problem both in the
continuous and discrete cases. Precisely, once the Helmholtz condition satisfied, can we
characterize all the possible (couple of) Lagrangian leading to the same second order (discrete)
Euler-Lagrange equation?

7.1. Reminder of the continuous case. — Let L1, L2 be two Lagrangian. They are
said to be equivalent if they lead to the same second order Euler-Lagrange equation. In this
case, we denote L1 ∼ L2. The linearity of the Euler-Lagrange equation with respect to its
associated Lagrangian implies that ∼ defines an equivalence relation on the set of Lagrangian.

Hence, the aim is to characterize the equivalence class of 0. If a Lagrangian L belongs to the
equivalence class of 0, then it it leads to a null second order Euler-Lagrange equation in the
sense that every curves q are solutions. In this case, L is said to be a null Lagrangian. We
refer to [13] for a detailed proof of the following result:

Theorem 13. — Let L be a Lagrangian. L is a null Lagrangian if and only if there exist
two functions f : R2 −→ R and g : R −→ R such that:

∀a < b, ∀q ∈ C
2([a, b],R), L(q, q̇, t) =

d

dt

(

f(q, t)
)

+ g(t). (73)
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Let us note that, in the major of literature, the previous theorem is presented with g = 0.
Indeed, we have just to add an anti-derivative of g to f . However, in the next section, we can
prove the discrete version of Theorem 13 only with this presentation.

7.2. The discrete case. — In the discrete case, we give the following discrete versions of
the definitions and results of the previous section.

Definition 14. — Let (L1
−, L

1
+) and (L2

−, L
2
+) be two couples of Lagrangian. We say that

they are equivalent if they lead to the same discrete second order Euler-Lagrange equation
(ELT ). In this case, we denote (L1

−, L
1
+) ∼ (L2

−, L
2
+). The linearity of the discrete Euler-

Lagrange equation with respect to its associated couple of Lagrangian implies that ∼ defines
an equivalence relation on the set of couple of Lagrangian. If a couple of Lagrangian (L−, L+)
belongs to the equivalence class of 0, then it leads to a null second order discrete Euler-
Lagrange equation in the sense that every discrete curves Q are solutions. In this case,
(L−, L+) is said to be a null couple of Lagrangian.

Our aim is then to characterize the set of the null couple of Lagrangian. It is done in the
following result:

Theorem 15. — Let (L−, L+) be a couple of Lagrangian. (L−, L+) is a null couple of La-
grangian if and only if there exist two functions f : R2 × R

+
∗ −→ R and g : R × R

+
∗ −→ R

such that for any T ∈ T, any Q ∈ R
N+1 and any p = 1, ..., N :

L−

(

Qp, (∆−Q)p, tp, h
)

+ L+

(

Qp−1, (−∆+Q)p−1, tp−1, h
)

= ∆−

(

f(Q,T , h)
)

p
+ g(tp, h). (74)

Proof. — Let us prove the sufficient condition. Let us assume that Equation (74) is true and
let L T denote the discrete Lagrangian functional associated to (L−, L+) and to a partition
T ∈ T. Then, we have for any T ∈ T and any Q ∈ R

N+1:

L
T (Q) = h

N
∑

p=1

L−

(

Qp, (∆−Q)p, tp, h
)

+ h

N−1
∑

p=0

L+

(

Qp, (−∆+Q)p, tp, h
)

= h
N
∑

p=1

[

L−

(

Qp, (∆−Q)p, tp, h
)

+ L+

(

Qp−1, (−∆+Q)p−1, tp−1, h
)

]

= h

N
∑

p=1

[

∆−

(

f(Q,T , h)
)

p
+ g(tp, h)

]

= f(QN , tN , h)− f(Q0, t0, h) + h
N
∑

p=1

g(tp, h).

Consequently, since the set of discrete variations is R
N+1
0 , every discrete curves Q ∈ R

N+1

are discrete critical points of L T and then the discrete Euler-Lagrange equation associated
is null. Then, (L−, L+) is a null couple of Lagrangian.
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Now, let us prove the necessary condition. Let us assume that (L−, L+) is a null couple of
Lagrangian. Then, for any T ∈ T and any Q ∈ R

N+1, we have:

∂L−

∂x
(Q,∆−Q,T , h) +

∂L+

∂x
(Q,−∆+Q,T , h)

+ ∆+

(

∂L−

∂v
(Q,∆−Q,T , h)

)

−∆−

(

∂L+

∂v
(Q,−∆+Q,T , h)

)

= 0. (75)

Then, let us define:

ℓ− : R
3 × R

+
∗ −→ R

(x1, x2, t, ξ) 7−→ L−

(

x1,
x1 − x2

ξ
, t, ξ

)

(76)

and

ℓ+ : R
3 × R

+
∗ −→ R

(x1, x2, t, ξ) 7−→ L+

(

x1,
x2 − x1

ξ
, t, ξ

)

.

(77)

Since Equality (75) is true for any T ∈ T and any Q ∈ R
N+1, we have for any (x, y, z, t, ξ) ∈

R
4 × R

+
∗ :

∂ℓ−
∂x1

(x, y, t, ξ) +
∂ℓ−
∂x2

(z, x, t+ ξ, ξ) +
∂ℓ+
∂x1

(x, z, t, ξ) +
∂ℓ+
∂x2

(y, x, t− ξ, ξ) = 0. (78)

Then, by differentiating the previous equality with respect to y or to z, we obtain for any
(x, y, t, ξ) ∈ R

3 × R
+
∗ :

∂2ℓ−
∂x1∂x2

(x, y, t, ξ) +
∂2ℓ+

∂x1∂x2
(y, x, t− ξ, ξ) = 0. (79)

Consequently, there exist two functions α, β : R2 × R
+
∗ −→ R such that for any (x, y, t, ξ) ∈

R
3 × R

+
∗ :

ℓ−(x, y, t, ξ) + ℓ+(y, x, t− ξ, ξ) = α(x, t, ξ) + β(y, t, ξ). (80)

Moreover, let us denote L T the discrete Lagrangian functional associated to (L−, L+) and
to a partition T ∈ T. Then, we have for any T ∈ T and any Q ∈ R

N+1:

L
T (Q) = h

N
∑

p=1

L−

(

Qp, (∆−Q)p, tp, h
)

+ h

N−1
∑

p=0

L+

(

Qp, (−∆+Q)p, tp, h
)

= h
N
∑

p=1

[

L−

(

Qp, (∆−Q)p, tp, h
)

+ L+

(

Qp−1, (−∆+Q)p−1, tp−1, h
)

]

= h

N
∑

p=1

[

ℓ−(Qp, Qp−1, tp, h) + ℓ+(Qp−1, Qp, tp−1, h)
]

= h

N
∑

p=1

[

α(Qp, tp, h) + β(Qp−1, tp, h)
]

.
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With a discrete calculus of variations, we obtain for any T ∈ T, any Q ∈ R
N+1 and any

W ∈ R
N+1
0 :

DL
T (Q)(W ) =

N−1
∑

p=1

[ ∂α

∂x1
(Qp, tp, h) +

∂β

∂x1
(Qp, tp+1, h)

]

Wp. (81)

Since (L−, L+) is a null couple of Lagrangian, we have DL T (Q)(W ) = 0 for any T ∈ T, any

Q ∈ R
N+1 and any W ∈ R

N+1
0 . Consequently, for any T ∈ T and any Q ∈ R

N+1, we have:

∂α

∂x1
(Qp, tp, h) +

∂β

∂x1
(Qp, tp+1, h) = 0. (82)

Consequently, we have for any (x, t, ξ) ∈ R
2 × R

+
∗ :

∂α

∂x1
(x, t, ξ) +

∂β

∂x1
(x, t+ ξ, ξ) = 0. (83)

Hence, there exists a function γ : R× R
+
∗ −→ R such that:

∀(x, t, ξ) ∈ R
2 ×R

+
∗ , α(x, t, ξ) + β(x, t+ ξ, ξ) = γ(t, ξ). (84)

Then, according to Equality (80), we have for any (x, y, t, ξ) ∈ R
3 × R

+
∗ :

ℓ−(x, y, t, ξ) + ℓ+(y, x, t− ξ, ξ) = α(x, t, ξ) − α(y, t− ξ, ξ) + γ(t− ξ, ξ). (85)

Thus, we have for any T ∈ T, any Q ∈ R
N+1 and any p = 1, ..., N :

L−

(

Qp, (∆−Q)p, tp, h
)

+ L+

(

Qp−1, (−∆+Q)p−1, tp−1, h
)

= ℓ−(Qp, Qp−1, tp, h) + ℓ+(Qp−1, Qp, tp−1, h)
= α(Qp, tp, h) − α(Qp−1, tp−1, h) + γ(tp−1, h)

(86)

Hence, let us define:

f : R
2 × R

+
∗ −→ R

(x, t, ξ) 7−→ ξα(x, t, ξ)
(87)

and

g : R× R
+
∗ −→ R

(t, ξ) 7−→ γ(t− ξ, ξ).
(88)

Then, we have for any T ∈ T, any Q ∈ R
N+1 and any p = 1, ..., N :

L−

(

Qp, (∆−Q)p, tp, h
)

+ L+

(

Qp−1, (−∆+Q)p−1, tp−1, h
)

= ∆−

(

f(Q,T , h)
)

p
+ g(tp, h). (89)

The proof is completed.
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18 LOÏC BOURDIN AND JACKY CRESSON

[5] D.R. Davis. The inverse problem of the calculus of variations in a space of (n + 1) dimensions.
Bull. Amer. Math. Soc., 35(3):371–380, 1929.

[6] J. Douglas. Solution of the inverse problem of the calculus of variations. Trans. Amer. Math. Soc.,
50:71–128, 1941.

[7] E. Hairer, C. Lubich, and G. Wanner. Geometric numerical integration, volume 31 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 2006. Structure-
preserving algorithms for ordinary differential equations.
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