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INTRODUCTION

In this article we study the qualitative behaviour of solutions of systems of semi-linear
parabolic equations under stochastic perturbations, in particular the positivity of solutions and
the validity of comparison principles. Our results are valid for both Itô’s and Stratonovich’s
interpretation (see [6]) of stochastic PDEs.

1. Additive Versus Multiplicative Noise and Itô’s Versus Stratonovitch’s

Interpretation

We first present two simple examples in order to motivate our results. Let us consider the
following ordinary differential equation for a real-valued function u : R → R{

du
dt = 0

u(0) = u0,
(1)

where u0 ∈ R. Certainly, this system preserves the positive cone. Indeed, if the initial data
satisfies u0 ≥ 0, then the corresponding solution remains non-negative u(t;u0) = u0 ≥ 0 for
all t > 0.

However, if the system is perturbed by an additive noise, that is a white noise modelled by
a standard Wiener process {Wt, t ≥ 0} on the probability space (Ω,F , P){

du = 0 dt + dWt

u(0) = u0,
(2)

the positivity is not preserved by the solutions of the perturbed stochastic system (2).

Proposition 1. — We assume that the initial data satisfies u0 ≥ 0. Then, there exists t∗ > 0

such that the solution u of system (2) becomes negative, that is u(t∗, ω;u0) < 0.

Proof. — First note that in case of an additive noise Itô’s and Stratonovich’s interpretation
of the stochastic differential equation (2) lead to the same integral equation (see [6] p.28),
namely

u(t) = u(0) +
∫ t

0
dWs = u(0) + W (t)−W (0) = u(0) + Wt,

where {Wt, t ≥ 0} is a standard Wiener process satisfying W (0) = 0.
By the law of iterated logarithm holds

lim inf
t→∞

Wt(ω)√
2t log log t

= −1
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almost surely (cf.[5], p.112). This implies that there is an increasing sequence {tn}n∈N with
limn→∞ tn = ∞ such that

lim inf
n→∞

Wtn(ω)√
2tn log log tn

= −1

almost surely. Consequently, for N0 sufficiently large follows

Wtn(ω) < −1
2

√
2tn log log tn

for all n ≥ N0. This proves that Wtn → −∞ when n tends to infinity, which implies that the
solution u(tn, ω;u0) < 0 if tn is sufficiently large.

Instead of an additive noise let us consider the perturbation of the original system by a
linear, multiplicative noise of the form{

du = 0 dt + αu ◦ dWt

u(0) = u0,
(3)

where the constant α ∈ R. In order to simplify computations we first use Stratonovich’s
interpretation of the stochastic differential equation as in this case ordinary chain rule formulas
apply under a change of variables. The solution of system (3) is explicitly given by the process

u(t, ω;u0) = u0e
αWt(ω).

Hence, independent of the sign of α ∈ R, the solutions of the perturbed system preserve
positivity. We claim that, if the stochastic differential equation (3) is interpreted in the sense
of Itô, the solutions possess the same property.

Proposition 2. — Independent of the choice of Itô’s or Stratonovich’s interpretation the so-
lutions of the stochastic problem (3) preserve positivity.

Proof. — The case of Stratonovich’s interpretation has been considered above. There is an ex-
plicit formula relating the integral equations obtained through Itô’s, respectively Stratonovich’s
interpretation. Interpreting the stochastic equation (3) in the sense of Itô

du = 0 dt + αu · dWt,

it is equivalent to the following Stratonovich equation

du = (0− α2

2
u)dt + αu ◦ dWt,

which can be solved explicitly. Indeed, the transformation v(t, ω) := e−αWt(ω)u(t, ω) leads to
the equation

dv = (−α2

2
v)dt,
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with initial data v(0) = u0. Its solution is the process v(ω, t) = u0e
−α2

2
t and consequently,

u(ω, t) = u0e
−(α2

2
t−αWt(ω)),

which is certainly non-negative if the initial data u0 is non-negative. We conclude that system
(3) preserves the positivity of solutions in Itô’s as well as in Stratonovich’s interpretation.

2. Positivity and Stochastic Perturbations of Semi-linear Parabolic Systems:

The Simplest Case

We are interested in stochastic perturbations of systems of semi-linear parabolic equations.
Our main result applied to scalar equations resembles the well-known fact, which was illus-
trated by our first example: Additive noise destroys the positivity property of solutions while
the positivity of solutions is preserved under perturbations by a linear, multiplicative noise.

As one of the simplest cases of the class of stochastic PDEs we study in this article we now
discuss the stochastic perturbation of a system of two semi-linear reaction-diffusion equations.
For the reasons pointed out above we consider perturbations by a linear, multiplicative noise in
both equations. Let O ⊂ Rn, n ∈ N, be a bounded domain, T > 0 and ui : O× [0, T ]×Ω → R,
i = 1, 2, be the solutions of the semi-linear initial value problem

du = (a11∆u + a12∆v + f1(u, v))dt + αu ◦ dWt

dv = (a21∆u + a22∆v + f2(u, v))dt + βv ◦ dWt

u|∂O = 0, v|∂O = 0
u|t=0 = u0, v|t=0 = v0,

(4)

where a = (aij)1≤i,j≤2 is a positive definite matrix with real, constant coefficients. Moreover,
the constants α, β ∈ R and the function f = (f1, f2) is assumed to be continuously differen-
tiable. We interpret the stochastic system in the sense of Stratonovich and apply an analogous
transformation as before. To be more precise, defining the functions ũ(t, ω) := e−αWt(ω)u(t, ω)

and ṽ(t, ω) := e−βWt(ω)v(t, ω) leads to the following non-autonomous system of random PDEs{
dũ
dt = a11∆ũ + a12e

−(α−β)Wt∆ṽ + e−αWtf1(eαWt ũ, eβWt ṽ)
dṽ
dt = a21e

−(β−α)Wt∆ũ + a22∆ṽ + e−βWtf2(eαWt ũ, eβWt ṽ).
(5)

Random PDEs can be interpreted pathwise and allow to apply deterministic methods. By
a generalization of the positivity criterion for semi-linear systems in [3] to non-autonomous
equations (cf. Part I, Section 2 of our article) we conclude that the solutions of system (5)
preserve positivity if and only if the coefficients a12 and a21 are zero and the interaction terms
F1(ũ, ṽ) := e−αWtf1(eαWt ũ, eβWt ṽ) and F2(ũ, ṽ) := e−βWtf2(eαWt ũ, eβWt ṽ) satisfy

F1(0, ṽ) ≥ 0, F2(ũ, 0) ≥ 0
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for ũ, ṽ ≥ 0. Note that due to the particular form of the transformation this is the case if and
only if the original reaction functions satisfy

f1(0, v) ≥ 0, f2(u, 0) ≥ 0

for u, v ≥ 0.
Let us finally discuss the positivity of solutions when the stochastic system (5) is interpreted

in the sense of Itô. In this case the system is equivalent to the system of Stratonovich equations{
du = (a11∆u + a12∆v + f1(u, v)− α2

2 u)dt + αu ◦ dWt

dv = (a21∆v + a22∆u + f2(u, v)− β2

2 v)dt + βv ◦ dWt.
(6)

Analogous transformations as above lead to the following random system for the functions ũ

and ṽ {
dũ
dt = a11∆ũ + a12e

−(α−β)Wt∆ṽ − α2

2 ũ + e−αWtf1(eαWt ũ, eβWt ṽ)
dṽ
dt = a21e

−(β−α)Wt∆ũ + a22∆ṽ − β2

2 ṽ + e−βWtf2(eαWt ũ, eβWt ṽ).
(7)

Applying the deterministic positivity criterion we conclude that the positivity of the solutions
of system (7) is preserved if and only if the coefficients a12 and a21 are zero and the interaction
functions satisfy

F̃1(0, ṽ) ≥ 0, F̃2(ũ, 0) ≥ 0

for ũ, ṽ ≥ 0. Here, the modified interaction functions are defined by

F̃1(ũ, ṽ) := F1(ũ, ṽ)− α2

2
ũ, F̃2(ũ, ṽ) := F2(ũ, ṽ)− β2

2
ṽ.

Hence, due to the linearity of the additional term obtained when using Itô’s interpretation
this condition is satisfied if and only if the functions F1 and F2 fulfil the same property. This
in turn is equivalent to an analogous condition for the interaction functions f1 and f2 of the
unperturbed deterministic system. We summarize our discussion in the following proposition.

Proposition 3. — The solutions of the system of Stratonovich equations (4) as well as the
solutions of the corresponding system obtained through Itô’s interpretation of the stochastic
system preserve positivity if and only if the solutions of the unperturbed system preserve posi-
tivity.

We want to point out the following: The conditions on the interaction functions f1 and f2,
which are necessary and sufficient for the positivity of solutions of the unperturbed determin-
istic system, are equivalent to analogous conditions for the functions F1 and F2 appearing in
the system of random PDEs in the case of Stratonovich’s interpretation. Moreover, they are
equivalent to the same conditions on the functions F̃1 and F̃2, which we obtain when inter-
preting the stochastic differential equations in the sense of Itô. Hence, in the particular case of
stochastic perturbations by a linear, multiplicative noise the qualitative behaviour of solutions



POSITIVITY CRITERION FOR SOLUTIONS OF SYSTEMS OF STOCHASTIC PDES 7

with respect to positivity is not affected - independent of the choice of Itô’s or Stratonovich’s
interpretation.

As was shown above, this is due to the explicit relation between the equations obtained
through Itô’s, respectively Stratonovich’s interpretation, and the particular type of transfor-
mation leading to the systems of random PDEs. The necessary and sufficient conditions for the
positivity of solutions of the unperturbed system are invariant under all these transformations.

In order to study the general case, where we cannot apply such a simple transformation
leading directly to systems of random PDEs, we consider a Wong-Zakaï-type approximation
of the stochastic systems of PDEs. As in [2] we interpret the stochastic system in the sense
of Itô. We essentially use the main result of this article, which states that the solutions of the
approximate systems converge in expectation, not to the solution of the original system, but
to the solution of a modified one. It turns out that the necessary and sufficient conditions
for the positivity as well as for the validity of comparison results are invariant under the
transformation relating the original system and the modified system. Moreover, the modified
system is exactly the system we obtain when interpreting the original system in the sense
of Stratonovich. Hence, we are not only able to derive necessary and sufficient conditions
for the positivity and the validity of comparison principles for the solutions of a large class
of stochastic PDEs, but also to prove that theses conditions are independent of the choice
of Itô’s, respectively Stratonovich’s, interpretation. That is, the qualitative behaviour of
solutions regarding positivity and the validity of comparison principles is independent of the
choice of the interpretation for the class of stochastic systems we consider.

3. Main Result

The systems of stochastic PDEs we study are of the following form

dul(x, t) =

(
−

m∑
i=1

Al
i(x, t, D)ui(x, t) + f l(x, t, u(x, t))

)
dt +

∞∑
i=1

qig
l
i(x, t, u(x, t))dW i

t ,(8)

where x ∈ O, t > 0 for l = 1, . . . ,m. We interpret the stochastic system in the sense of Itô.
Here, u = (u1, . . . , um) is a vector-valued function, O ⊂ Rn is a bounded domain and Al

i are
linear elliptic operators of second order. Moreover, we assume {W i

t , t ≥ 0}i∈N is a family of
independent standard scalar Wiener processes on the canonical Wiener space (Ω,F , P) and
dW i

t denotes the corresponding Itô differential. The boundary conditions are given by the
operators (B1, . . . , Bm),

Bl(x, D)ul(x, t) = 0 on ∂O, t > 0
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and the solution satisfies the initial conditions

ul(0, x) = ul
0(x) x ∈ Ō

for l = 1, . . . ,m.
We denote by (A, f, g) the previous system (8) of Itô equations and the corresponding

unperturbed deterministic system by (A, f, 0). In our article we will derive necessary and
sufficient conditions for the coefficient functions of the operators Al

i and the functions f and
g to ensure that system (8) preserves the positivity of solutions. In this case, that is, if the
solutions corresponding to non-negative initial data remain non-negative as long as they exist,
we say that the system satisfies the positivity property. The deterministic case has been studied
in [3]. Assuming that the unperturbed deterministic system (A, f, 0) satisfies the positivity
property we are in particular interested in characterizing the class of stochastic perturbations
g such that the system (A, f, g) satisfies the positivity property.

In the first section of our article, we prove that necessary and sufficient conditions for
the positivity of solutions of the unperturbed system are that the matrices appearing in the
differential operator A are diagonal and the components of the interaction function satisfy

f l(x, t, u1, . . . , ul−1, 0, ul+1, . . . , un) ≥ 0 for uj ≥ 0 and x ∈ O, t ≥ 0,

where j, l = 1, . . . ,m. This result extends one of the previous results by Efendiev-Sonner (cf.
[3]). As a consequence, we are led to the study of the following class of systems with diagonal
differential operators

dul(x, t) =
(
−Al(x, t, D)ul(x, t) + f l(x, t, u(x, t))

)
dt +

∞∑
i=1

qig
l
i(x, t, u(x, t))dW i

t ,(9)

for l = 1, . . . ,m, where x ∈ O and t > 0. In the sequel we denote by (f, g) the system of
SPDEs (9) and the corresponding unperturbed system of PDEs by (f, 0).

As mentioned above the main problem we address in this article is the characterization
of stochastic perturbations g such that, if the unperturbed equation satisfies the positivity
property, then the perturbed stochastic problem (f, g) satisfies also this property. However, we
obtain even a stronger result. We derive necessary and sufficient conditions for the interaction
function f and the stochastic perturbation g such that the system of stochastic Itô PDEs
(9) satisfies the positivity property. Moreover, the necessary and sufficient conditions for
the positivity of solutions, as well as for the validity of comparison theorems, are invariant
under the transformation relating the equations obtained through Itô’s and Stratonovich’s
interpretation. As a consequence, our main result is the following:

Theorem 1. — Let (f, g) be a system of stochastic PDEs in Itô or Stratonovich interpreta-
tion. We assume that the functions gl

j are twice continuously differentiable with respect to uk,
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for all j ∈ N and k, l = 1, . . . ,m. Then, the system (f, g) satisfies the positivity property if
and only if the interaction function f satisfies the deterministic positivity condition and

gl
j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) = 0 (x, t) ∈ O × [0, T ], uk ≥ 0,

for all j ∈ N and k, l = 1, . . . ,m.

The proof makes an essential use of Chueshov-Vuillermot’s result in [2] on a Wong-Zakaï
type approximation theorem for the stochastic problem (f, g). Their main theorem yields
a smooth random approximation of the stochastic system, which allows to apply determin-
istic methods to study the qualitative behaviour of solutions. In particular, we will use a
generalization of the necessary and sufficient conditions for the positivity of solutions in the
deterministic setting obtained by Efendiev-Sonner in [3].

Acknowledgments: We want to thank Tomás Caraballo for helpful discussions.
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PART I

THE DETERMINISTIC CASE - NECESSARY AND SUFFICIENT

CONDITIONS FOR POSITIVITY

1. Semi-linear Systems of Parabolic PDEs

Our aim is to derive necessary and sufficient conditions for the coefficients of the system
of stochastic partial differential equations (8) to satisfy the positivity property. To this end
we consider a Wong-Zakaï approximation of this system. The approximation preserves the
positivity property of solutions and leads to a family of random equations. To the family of
random equations we may apply results from the deterministic theory of PDEs.

Necessary and sufficient conditions for autonomous systems of semi-linear and quasi-linear
reaction-diffusion-convection-equations were studied in the article [3]. In the present case,
we cannot directly apply these results as the Wong-Zakaï approximation leads to a system of
random parabolic equations with time-dependent interaction functions. For the convenience
of the reader we will present a slight generalization of one of the theorems in [3] allowing
non-autonomous interactions functions and arbitrary linear elliptic differential operators of
second order. The proof uses the same methods and ideas as applied in the mentioned article.

To be more precise, we consider the following class of systems of semi-linear parabolic
equations

∂tu
l(x, t) = −

m∑
i=1

Al
i(x,D)ui(x, t) + f l(x, t, u(x, t)),(10)

where u = (u1, . . . , um) is a vector-valued function of x ∈ O, t > 0 and O ⊂ Rn, n ∈ N, is a
bounded domain with smooth boundary ∂O.

Assumptions on the operator A

The linear second order differential operators Al
i(x, D) are defined as

Al
i(x,D) = −

n∑
k,j=1

ail
kj(x)∂xk

∂xj +
n∑

k=1

ail
k (x)∂xk

,

for i, l = 1, . . . ,m.
Comparing with the setting in [2] we omit the zero-order linear terms in the operator A as

for the problems we address it seems more natural to absorb these terms in the interaction
function f .
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We assume that the coefficient functions satisfy ail
kj = ail

jk and the operators are uniformly
elliptic, that is

n∑
k,j=1

ail
kj(x)ζkζj ≥ µ|ζ|2, for all x ∈ O, ζ ∈ Rn,

i, l = 1 . . . , m. Moreover, all coefficient functions are continuously differentiable and bounded
in the domain O.

Assumptions on the boundary operators B

The boundary values of the solution are given by the operators

Bl(x,D) = bl
0(x) + δl

n∑
k=1

bl
k(x)∂xk

, l = 1, . . . ,m,

where δl ∈ {0, 1}. The functions bl
k, b

l
0 are smooth on the boundary ∂O and satisfy bl

0 ≥ 0.
Moreover, we assume bl

0 ≡ 1 for δl = 0 and bl = (bl
1, . . . , b

l
m) is an outward pointing nowhere

tangent vector-field on the boundary ∂O.
Assumptions on the non-linear interaction term f

For the (non-linear) interaction function we assume that the partial derivatives ∂uf l exist and
are continuous, l = 1, . . . ,m. Moreover, we assume that for x ∈ O and t > 0 the functions
f l = f l(x, t, u) and ∂uf l = ∂uf l(x, t, u) are bounded for bounded values of u.

2. A Positivity Criterion

In order to formulate our criterion for the positivity of solutions we define the positive cone
as the set of componentwise almost everywhere non-negative functions.

Definition 1. — By K+ := {u : O → Rm | ui ∈ L2(O), ui ≥ 0 a.e. in O, i = 1, . . . ,m} we
denote the positive cone, that is the set of all non-negative vector-valued functions on the
domain O.

Our concern is not to study the existence of solutions but their qualitative behaviour. Hence,
in the sequel we assume that for any initial data u0 ∈ K+ there exists a unique

solution and for t > 0 the solution satisfies L∞-estimates.
The following theorem provides a criterion, which ensures that system (10) satisfies the

positivity property , that is, solutions u( · , · ;u0) : O × [0, T ] → Rm of system (10), where
T > 0, originating from non-negative initial data u0 ∈ K+ remain non-negative (as long as
they exist).

Theorem 2. — Let the operators A and B be defined as in the beginning of this section and
the above conditions on the coefficient functions of the operators and interaction functions be
satisfied. Moreover, we assume the initial data u0 ∈ K+ is smooth and fulfils the compatibility
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conditions. Then, system (10) satisfies the positivity property if and only if the matrices(
ail

kj

)
1≤i,l≤m

and
(
ail

k

)
1≤i,l≤m

are diagonal for all 1 ≤ j, k ≤ m and the components of the
reaction term satisfy

f i(x, t, u1, . . . , 0︸︷︷︸
i

, . . . , um) ≥ 0, for u1 ≥ 0, . . . , um ≥ 0,

1 ≤ i ≤ m, and x ∈ O, t > 0.

Hence, concerning stochastic perturbations of these systems of semi-linear PDEs, which
we address in the second part of our article, it suffices to study the class of systems (9). A
Wong-Zakaï approximation of such systems is considered in the article [2], where even slightly
more general interaction functions are allowed.

Proof. — Without loss of generality we assume homogeneous Dirichlet boundary values for
the solution. For a discussion of general boundary conditions we refer to the article [3]. Let
us rewrite system (10) in the following form

∂tu(x, t) =
n∑

k,j=1

akj(x)∂xk
∂xju(x, t)−

n∑
k=1

ak(x)∂xk
u(x, t) + f(x, t, u(x, t)),(11)

where the matrices akj and ak are defined as

akj(x) =

 a11
kj(x) · · · a1m

kj (x)
...

. . .
...

am1
kj (x) · · · amm

kj (x)

 , ak(x) =

 a11
k (x) · · · a1m

k (x)
...

. . .
...

am1
k (x) · · · amm

k (x)


and all derivatives in system (11) are applied componentwise to the vector-valued function
u = (u1, . . . , ul).

Necessity: We assume the solution u( · , t;u0) corresponding to initial data u0 ∈ K+

remains non-negative for t > 0 and prove the necessity of the stated conditions. Taking smooth
initial data u0 and an arbitrary function v ∈ K+, that is orthogonal to u0 in L2(O; Rm), we
observe(

∂tu|t=0, v
)
L2(O;Rm)

=
(

lim
t→0+

u( · , t;u0)− u0

t
, v
)
L2(O;Rm)

=

= lim
t→0+

(u( · , t;u0)
t

, v
)
L2(O;Rm)

− lim
t→0+

(u0

t
, v
)
L2(O;Rm)

=

= lim
t→0+

(u( · , t;u0)
t

, v
)
L2(O;Rm)

≥ 0,

where we used the orthogonality of u0 and v as well as the assumption u( · , t;u0) ∈ K+. On
the other hand, since u is the solution of system (10) corresponding to initial data u0, we
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obtain (
∂tu|t=0, v

)
L2(O;Rm)

=
( n∑

k,j=1

akj(·)∂xk
∂xju0 −

n∑
k=1

ak(·)∂xk
u0, v

)
L2(O;Rm)

+(12)

+
(
f(·, 0, u0), v

)
L2(O;Rm)

≥ 0.

In particular, for fixed i, l ∈ {1, . . . ,m}, i 6= l, choosing the functions u0 = (0, . . . , ũ︸︷︷︸
l

, . . . , 0)

and v = (0, . . . , ṽ︸︷︷︸
i

, . . . , 0) with ũ ≥ 0, ṽ ≥ 0, leads to the scalar inequality

∫
O

( n∑
k,j=1

ail
kj(x)∂xk

∂xj ũ(x)−
n∑

k=1

ail
k (x)∂xk

ũ(x) + f i(x, 0, u0(x))
)
· ṽ(x) dx ≥ 0.

As this inequality holds for an arbitrary non-negative function ṽ ∈ L2(Ω), we obtain the
pointwise estimate

n∑
k,j=1

ail
kj(x)∂xk

∂xj ũ(x)−
n∑

k=1

ail
k (x)∂xk

ũ(x) + f i(x, 0, u0(x)) ≥ 0(13)

almost everywhere in O. This implies for 1 ≤ i, l ≤ m, i 6= l and all 1 ≤ j, k ≤ n

ail
kj(x) = ail

k (x) = 0.

Moreover, f i(x, 0, u0) ≥ 0 for u0 = (0, . . . , ũ︸︷︷︸
l

, . . . , 0), ũ ≥ 0. Hence, the matrices akj and ak

are necessarily diagonal. Let us now choose initial data u0 = (u1, . . . , 0︸︷︷︸
i

, . . . , um) and the

function v = (0, . . . , ṽ︸︷︷︸
i

, . . . , 0) with ũ1, . . . , ũm ≥ 0, ṽ ≥ 0 to conclude from inequality (13)

that the interaction terms necessarily satisfy

f i(x, 0, ũ1, . . . , 0, . . . ũm) ≥ 0,

for ũ1, . . . ũm ≥ 0 and x ∈ O, 1 ≤ i ≤ m.
We need to show that these conditions also hold for t > 0. Let us suppose that at some

time t0 > 0 the solution approaches a boundary point of the positive cone K+. This implies
that ui|t=t0 = 0 for some 1 ≤ i ≤ m. Choosing the function v = (0, . . . , ṽ︸︷︷︸

i

, . . . , 0) with

arbitrary ṽ ≥ 0, it is orthogonal to u( · , t0;u0) in L2(O; Rm). We observe that(
∂tu|t=t0 , v

)
L2(O;Rm)

=
(

lim
t→(t0)+

ui( · , t;u0)− ui( · , t0;u0)
t− t0

, ṽ
)
L2(O)

=

= lim
t→(t0)+

(ui( · , t;u0)
t− t0

, ṽ
)
L2(O)

− lim
t→(t0)+

(ui( · , t0;u0)
t− t0

, ṽ
)
L2(O)

=

= lim
t→(t0)+

(ui( · , t;u0)
t− t0

, ṽ
)
L2(O)

≥ 0,
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where we used that ui|t=t0 = 0 as well as the positivity of the solution, that is u( · , t;u0) ∈ K+

for t > 0. On the other hand, as u is a solution of the initial value problem it satisfies(
∂tu|t=t0 , v

)
L2(O;Rm)

=
( n∑

k,j=1

akj( · )∂xk
∂xju|t=t0 −

n∑
k=1

ak( · )∂xk
u|t=t0 , v

)
L2(O;Rm)

+(14)

+
(
f( · , t0, u|t=t0), v

)
L2(O;Rm)

≥ 0.

By the diagonality of the matrices akj and ak and following the same arguments as above we
obtain the pointwise inequality

f i(x, t0, ũ
1|t=t0 , . . . , 0︸︷︷︸

i

, . . . , ũm|t=t0) ≥ 0

almost everywhere in O. Hence, the matrices akj and ak are necessarily diagonal and the
components of the interaction functions satisfy

f i(x, t, u1, . . . , 0︸︷︷︸
i

, . . . , um) ≥ 0 for uj ≥ 0

x ∈ O, t > 0 and 1 ≤ i, j ≤ m.
Sufficiency: Let us assume the matrices

(
ail

kj

)
1≤i,l≤m

and
(
ail

k

)
1≤i,l≤m

are diagonal and
the components of the interaction function satisfy

f l(x, t, u1, . . . , 0︸︷︷︸
i

, . . . , um) ≥ 0, for u1 ≥ 0, . . . , um ≥ 0, x ∈ O, t > 0,

for all 1 ≤ l ≤ m. We show that these conditions ensure that the solution corresponding to
initial data u0 ∈ K+ remains non-negative for t > 0. We will even prove the positivity of
solutions under more general assumptions. We allow non-autonomous differential operators
and suppose the assumptions on the operator A in the beginning of this section are fulfilled
for all t > 0. If the differential operators are diagonal, the system of equations takes the form

∂tu
l(x, t) =

n∑
k,j=1

al
kj(x, t)∂xk

∂xju
l(x, t)−

n∑
k=1

al
k(x, t)∂xk

ul(x, t) + f l(x, t, u(x, t)),(15)

1 ≤ l ≤ m, where the functions al
kj and al

k are defined by al
kj := all

kj , a
l
k := all

k . Introducing
the positive and negative part u+ := max{u, 0}, respectively u− := max{−u, 0}, of a given
function u ∈ L2(O), we can represent it as u = u+−u− and its absolute value as |u| = u++u−.
By the definition immediately follows that the product u− u+ = 0. It is a well-known fact
that if a function u belongs to the Sobolev space H1(O), then this also holds for its positive
and negative part u+, u− ∈ H1(O). Furthermore, the derivatives satisfy

Du− =

{
−Du u < 0
0 u ≥ 0

Du+ =

{
Du u > 0
0 u ≤ 0
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(cf. [4]). This certainly implies

Du+ u− = u+ Du− = Du+ Du− = 0.

In order to prove the positivity of the solution u = u( · , · ;u0) corresponding to initial data
u0 ∈ K+ we show that (ui

0)− = 0 a.e. in O implies that ui
− := ui( · , t;u0)− = 0 a.e. in O for

t > 0 and all 1 ≤ i ≤ m.
Multiplying the l-th equation of system (15) by ul

− and integrating over O we obtain

(
∂tu

l, ul
−
)
L2(O)

=
( n∑

k,j=1

al
kj(·, t)∂xk

∂xju
l, ul

−
)
L2(O)

−
( n∑

k=1

al
k(·, t)∂xk

ul, ul
−
)
L2(O)

+

+
(
f l(·, t, u), ul

−
)
L2(O)

,

Note that the left hand side of the equation can be written as(
∂tu

l, ul
−
)
L2(O)

= −
(
∂tu

l
−, ul

−
)
L2(O)

= −1
2
∂t‖ul

−‖2
L2(O).

Taking into account the homogeneous Dirichlet boundary conditions we obtain for the first
term on the right hand side of the equation

( n∑
k,j=1

al
kj(·, t)∂xk

∂xju
l, ul

−
)
L2(O)

= −
( n∑

k,j=1

al
kj(·, t)∂xk

∂xju
l
−, ul

−
)
L2(O)

=

=
∫

O

n∑
k,j=1

al
kj(x, t)∂xju

l
−(x, t)∂xk

ul
−(x, t)dx +

∫
O

n∑
k,j=1

∂xk
al

kj(x, t)∂xju
l
−(x, t)ul

−(x, t)dx.

By Young’s inequality we derive the estimates

∣∣ ∫
O

n∑
k,j=1

∂xk
al

kj(x, t)∂xju
l
−(x, t)ul

−(x, t)dx
∣∣ ≤ ε

∫
O
|Oul

−(x, t)|2dx + Cε,1‖ul
−‖2

L2(O),

for some constant Cε,1 ≥ 0 and

∣∣ ∫
O

n∑
k=1

al
k(x, t)∂xk

ul
−(x, t)ul

−(x, t)dx
∣∣ ≤ ε

∫
O
|Oul

−(x, t)|2dx + Cε,2‖ul
−‖2

L2(O)dx,

for some Cε,2 ≥ 0.
It remains to estimate the interaction term. By assumption the functions f l are continuously

differentiable with respect to u, so we can represent them as

f l(x, t, u1, . . . , um) = f l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) + ul

∫ 1

0
∂ul

f l(x, t, u1, . . . , sul, . . . , um)ds,
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that is, f l(x, t, u1, . . . , um) = f l(x, t, u1, . . . , 0, . . . , um)+ul·F l(x, t, u), with a bounded function
F l : Ω× R× Rm → R. This representation yields∫

O
f l(x, t, u(x, t)) · ul

−(x, t)dx =
∫

O
f l(x, t, u1(x, t), . . . , 0︸︷︷︸

l

, . . . , um(x, t)) · ul
−(x, t)dx +

+
∫

O
ul(x, t) · F l(x, t, u(x, t)) · ul

−(x, t)dx =

=
∫

O
f l(x, t, u1(x, t), . . . , 0︸︷︷︸

l

, . . . , um(x, t)) · ul
−(x, t)dx−

∫
O
|ul
−(x, t)|2 · F l(x, t, u(x, t))dx.

Hence, using the uniform parabolicity assumption and collecting all terms we derive the esti-
mate

1
2
∂t‖ul

−‖2
L2(O) + µ

∫
O
|Oul

−(x, t)|2dx ≤

≤ 1
2
∂t‖ul

−‖2
L2(O) +

∫
O

n∑
k,j=1

al
kj(x, t)∂xju

l
−(x, t)∂xk

ul
−(x, t)dx ≤

≤
∣∣∣ ∫

O

n∑
k,j=1

∂xk
al

kj(x, t)∂xju
l
−(x, t)ul

−(x, t)dx +
∫

O

n∑
k=1

al
k(x, t)∂xk

ul
−(x, t)ul

−(x, t)dx
∣∣∣−

−
∫

O
f l(x, t, u1(x, t), . . . , 0︸︷︷︸

l

, . . . , um(x, t)) · ul
−(x, t)dx +

+
∫

O
|ul
−(x, t)|2 · F l(x, t, u(x, t))dx ≤

≤ 2ε

∫
O
|Oul

−(x, t)|2dx + (Cε + C)‖ul
−‖2

L2(O) −

−
∫

O

(
f l(x, t, u1(x, t), . . . , 0, . . . , um(x, t))

)
ul
−(x, t)dx,

for some constants Cε, C ≥ 0. Under the assumption uj ≥ 0, j 6= l, the conditions imposed on
the interaction functions imply

f l(x, t, u1(x, t), . . . , 0︸︷︷︸
l

, . . . , um(x, t)) · ul
−(x, t) ≥ 0.

Choosing ε > 0 sufficiently small we therefore obtain the inequality

∂t‖ul
−‖2

L2(O) ≤ c · ‖ul
−‖2

L2(O),

for some constant c ≥ 0. By Gronwall’s Lemma and the initial condition (ul
0)− = 0 we

conclude that ul
− = 0 a.e. in O for t > 0.
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It remains to justify our assumptions on the interaction functions. Instead of the original
system (11) we consider the modified system

∂tû(x, t) =
n∑

k,j=1

akj(x, t)∂xk
∂xj û(x, t)−

n∑
k=1

ak(x, t)∂xk
û(x, t) + f̂(x, t, û(x, t))

û|t=0 = u0

û|∂O = 0,

where the function f̂ is given by

f̂ l(x, t, û(x, t)) = f l(x, t, |û1(x, t)|, . . . , 0, . . . , |ûm(x, t)|) + ûl(x, t) · F l(x, t, û(x, t))

with F l as defined above. Following the same arguments as before we conclude that the
solution û of this modified system preserves positivity, that is, if the initial data u0 ∈ K+ we
obtain û( · , t;u0) ∈ K+ for t > 0. However, the solution û with û1 ≥ 0, . . . , ûm ≥ 0 satisfies
the original system

∂tu(x, t) =
n∑

k,j=1

akj(x, t)∂xk
∂xju(x, t)−

n∑
k=1

ak(x, t)∂xk
u(x, t) + f(x, t, u(x, t))

u|t=0 = u0

u|∂O = 0.

By the uniqueness of the solution corresponding to initial data u0 follows u = û, which implies
that the solution u of the original system satisfies u( · , t;u0) ∈ K+ for t > 0 and concludes
the proof of the theorem.

Remark 1. — Under appropriate assumptions on the time-dependent coefficients of the op-
erator A we could prove an analogous result for non-autonomous differential operators. As
the proof of the sufficiency of the stated conditions does not change in the non-autonomous
setting we decided to included this generalization in the proof of Theorem 2. The first part of
the proof however requires some modifications and additional hypothesis. As these questions
are not the main concern of our article we decided to state the theorem in the above form for
autonomous differential operators.
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PART II

THE STOCHASTIC CASE - NECESSARY AND SUFFICIENT

CONDITIONS FOR POSITIVITY AND VALIDITY OF COMPARISON

PRINCIPLES

In this section we derive necessary and sufficient conditions for a large class of stochastic
systems of PDEs to satisfy the positivity property. The main ingredient of our proof is a
Wong-Zakaï-type approximation theorem, which allows us to associate to a given stochastic
system of PDEs a family of random PDEs. The solutions of the family of random equations
converge in expectation to the solution of the original problem. As a consequence, we can
apply the result for deterministic systems stated in the first part of our article to obtain a
criterion for the positivity of solutions of stochastic systems.

1. Wong-Zakaï Approximation and Random Systems of PDEs

In 1965 E. Wong and M. Zakaï ([9],[10]) studied the relation between ordinary and stochas-
tic differential equations. The main point is that Itô’s approach to stochastic differential equa-
tions is based on Itô’s definition of stochastic integrals, which are not directly connected to the
limit of ordinary integrals. In particular, stochastic differential equations are not defined as
an extension or limit of ordinary differential equations. Wong and Zakaï introduce a smooth
approximation of the Brownian motion in order to obtain an approximation of stochastic
integrals by ordinary integrals. Doing so, they obtain an approximation of the stochastic dif-
ferential equation by a family of random differential equations. However, when the smoothing
parameter tends to zero the random solutions do not converge to a solution of the original
stochastic differential equation, but a modified one. The appearing correction term is called
Wong-Zakaï correction term. The Wong-Zakaï approximation theorem has been generalized
in various directions. We refer to D.W. Stroock and S.R.S. Varadhan [7] for systems of ordi-
nary differential equations and to G. Tessitore and J. Zabczyk [8] for evolution equations in
an abstract setting. In this section, we briefly recall the main result by Chueshov-Vuillermot
in [2] about a Wong-Zakaï-type approximation theorem for a class of stochastic systems of
semi-linear parabolic PDEs.

To be more precise, we will analyse the class of systems of stochastic Itô PDEs (9), where
the operators in the deterministic part of the equation are defined as in Part I, Section 1.

Assumptions on stochastic perturbations

We assume {W j
t , t ≥ 0}j∈N is a family of mutually independent standard scalar Wiener
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processes on the canonical Wiener space (Ω,F , P) and dW j
t denotes the corresponding Itô dif-

ferential. The non-negative parameters qj are normalization factors. Moreover, the functions
gl
j : O × [0, T ] × R → R are smooth and assumed to be bounded for bounded values of the

solution, j ∈ N, l = 1, . . . ,m.

1.1. Smooth Predictable Approximation of the Wiener Process. — A general notion
of a smooth predictable approximation of the Wiener process is defined by Chueshov and
Vuillermot in [2] (Definition 4.1, p.1440). In the following, we will take the main example
provided in this article as a definition (Proposition 4.2, p.1441).

Let {Wt, t ≥ 0} be a standard scalar Wiener process on the probability space (Ω,F , P)

with filtration {Ft; t ∈ R+}. The smooth predictable approximation of {Wt, t ≥ 0} is the
family of random processes {Wε(t), t ≥ 0}ε>0 defined by

Wε(t) =
∫ ∞

0
φε(t− τ)Wτdτ,

where φε(t) = ε−1φ(t/ε) and φ(t) is a function with the properties

φ ∈ C1(R), suppφ ⊂ [0, 1],
∫ 1

0
φ(t)dt = 1.

We will need the following result ([2], p.1442), which states that the derivative of the smooth
predictable approximation Wε, denoted by Ẇε, can be written as a stochastic integral of the
form

Ẇε(t) =
∫ t

t−ε
φε(t− τ)dWτ , t ≥ ε.

As a consequence, Ẇε is Gaussian, which will be fundamental in our proof.

1.2. Predictable Smoothing of Itô’s Problem and Random Systems. — Using the
previously defined family of smooth predictable approximations {W j

ε (t), t ≥ 0}ε>0,j∈N of the
Wiener processes {W j

t , t ≥ 0}j∈N allows us to define the predictable smoothing of Itô’s problem
(9) as the family of random equations

(16) dul(x, t) =
(
−Al(x, t, D)ul(x, t) + f l(x, t, u(x, t))

)
dt +

( ∞∑
j=1

qjgj(x, t, u(x, t))Ẇ j
ε (t)

)
dt,

where l = 1, . . . ,m. As a consequence, using our notation, we are led to the following defini-
tion:

Definition 2. — The smooth approximation of the stochastic system (f, g) of PDEs
with respect to the smooth predictable approximation {Wε(t), t ≥ 0}ε>0 is defined as the family
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of random PDEs (fε,ω, 0), where

f l
ε,ω(x, t, u(x, t)) = f l(x, t, u(x, t)) +

∞∑
j=1

qjg
l
j(x, t, u(x, t))Ẇ j

ε (t),

ω ∈ Ω, ε > 0.

1.3. A Wong-Zakaï Approximation Theorem. — Following Chueshov and Vuillermot
([2], p.1436) we use the following notion of mild solution for a stochastic system of PDEs
(f, g):

Definition 3. — A random function u(x, t, ω) = (u1(x, t, ω), . . . , um(x, t, ω)) is said to be
a mild solution of (f, g) in the space V = W 1

2,B(O, Rm) on the interval [0, T ], if u(t) =

u(x, t, ω) ∈ C(0, T ;L2(Ω×O)) is a predictable process such that∫ T

0
E ‖ u(t) ‖2

V dt < ∞

and satisfies the integral equation

(17) u(t) = U(t, 0)u0 +
∫ t

0
U(t, τ)f(τ, u(τ))dτ +

∞∑
j=1

qj

∫ t

0
U(t, τ)gj(τ, u(τ))dW j(τ, ω),

where we assume that all integrals in (17) exist.

The family {U(t, τ), 0 ≤ τ ≤ t < ∞} in the above definition denotes the linear evolution
family generated by the operators {A(t), t ≥ 0} in L2(O; Rm). The domain of the linear
operators is defined as

W 2
2,B(O; Rm) := {u ∈ W 2,2(O; Rm) : Bu = 0},

where B denotes the boundary operator and

W 2,2(O) := {u ∈ L2(O) : Dαu ∈ L2(O) for all |α| ≤ k}.

For further details we refer to [2] and [1]. Next, we introduce the notion of convergence that
we will use.

Definition 4. — Let (f, g) be a stochastic system of PDEs and (fε,ω, 0) be its smooth approx-
imation. We say that a mild solution uε of the random system (fε,ω, 0) converges to a mild
solution û of the stochastic system of PDEs (f̂ , g) if

lim
ε→0

∫ T

0
E ‖ û(t)− uε(t) ‖2

W 1
2 (O;Rm) dt = 0.

The main result of Chueshov and Vuillermot in [2] is the following (Theorem 4.3, p.1443):
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Theorem 3. — Assume that the stated assumptions on the operators A and B and the func-
tions f and g are satisfied. Moreover, let

∑∞
j=1 qj < ∞, the initial data u0 ∈ C2

B(O; Rm) be
F0-measurable and E‖u0‖r

C2(O) < ∞ for some r > 8. We assume the associated system of
random PDEs (fε,ω, 0) has a mild solution uε belonging to the class C(0, T ;Lr(Ω, Xα,p)) for
all 0 ≤ α < 1 and p > 1 and for this solution there exists a constant C independent of ε such
that

sup
t∈[0,T ]

E ‖ uε ‖r
Lp(O)≤ C for all p > 1.

Then, the mild solution uε converges to a solution ucor of the corrected stochastic system of
PDEs (fcor, g) when ε tends to zero, where

f l
cor = f l +

1
2

∞∑
j=1

q2
j

m∑
i=1

gi
j

∂gl
j

∂ui
,

for l = 1, . . . m.

For further details we refer to the article [2]. Our aim is not to prove the existence of
solutions, we are interested in their qualitative behaviour. Hence, in the sequel we assume
that a solution of the stochastic initial value problem exists and the solution of the modified
system is given as the limit of the solutions of the smooth random approximations. Sufficient
conditions for existence and uniqueness of solutions can be found in the cited article.

2. How to Study the Qualitative Behaviour of Solutions of Systems of Stochastic

PDEs

We will now apply the Wong-Zakaï approximation theorem and the results for the positivity
of solutions of deterministic systems in the first part of our article to study the qualitative
behaviour of solutions of systems of stochastic PDEs (f, g).

2.1. The General Strategy. — The general strategy in all proofs is the following:

– As Chueshov and Vuillermot in [2] we associate to a system (F, g) of stochastic PDEs a
system of random PDEs. The system of random PDEs is explicit and depends on the
definition of the smooth approximation Wε of the Wiener process {W (t), t ≥ 0}. It is
given by the family of random PDEs (Fε,ω, 0), ε > 0, ω ∈ Ω, where

F l
ε,ω = F l +

∞∑
j=1

qjg
l
jẆ

j
ε ,

for l = 1, . . . ,m, and Ẇε denotes the time derivative of the smooth predictable approx-
imation Wε. The Wong-Zakaï approximation theorem states that the solutions of the
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random system of PDEs converge in expectation to the solutions of the modified system
of stochastic PDEs (

F +
1
2

∞∑
j=1

q2
j hj , g

)
,

where the function hj = (h1
j , . . . , h

m
j ) is given by

hl
j(x, t, u(x, t)) =

m∑
i=1

gi
j(x, t, u(x, t))

∂gl
j

∂ui
(x, t, u(x, t)).

– Consequently, for a given stochastic system (f, g) we first construct a system of stochastic
PDEs (F, g) such that the solutions of its associated system of random PDEs (Fε,ω, 0)

converge to the solutions of our original system (f, g) of stochastic PDEs.
– We then use results from the deterministic theory for the qualitative behaviour of solu-

tions of the system of random PDEs (Fε,ω, 0) and prove that this property is preserved
by passing to the limit when ε goes to zero.

2.2. An Example: A Comparison Principle and Sufficient Conditions by Chueshov-

Vuillermot. — In this section we present sufficient conditions for the function g to ensure
that, if the solutions of the unperturbed system (f, 0) satisfy a comparison principle, then this
property is preserved by the solutions of the perturbed stochastic system.

For two vectors u, v ∈ Rm we write u ≤ v if this order relation holds componentwise, that
is ui ≤ vi for all i = 1, . . . ,m. In order to formulate the result we introduce the following
notions.

Definition 5. — We say that the deterministic system (f, 0) satisfies the comparison prin-

ciple, if for given initial data such that u0(x) ≤ v0(x) holds a.e. in O the corresponding solu-
tions u = (·, ·;u0) and v = v(·, ·; v0) preserve this order relation, that is ui(x, t) ≤ vi(x, t) holds
a.e. in O× [0, T ], for all i = 1, . . . ,m. In an analogous manner the notion of the comparison
principle is defined for stochastic systems (f, g).

Furthermore, we call a function f : O× [0, T ]×Rm → Rm quasi-monotone, if it satisfies

f l(x, t, u) ≤ f l(x, t, v)

for all = 1, . . . ,m, (x, t) ∈ O × [0, T ] and all u, v ∈ Rm such that u ≤ v and ul = vl.

The following result is by Chueshov-Vuillermot ([2], Theorem 5.8, p.1479), although we
formulate it in a different way in order to adapt it to the notions of our article.

Theorem 4. — Let (f, g) be a system of stochastic PDEs such that the function f is quasi-
monotone. We assume that each of the functions gl

j depends on the component ul of the
solution only, that is gl

j(x, t, u) = gl
j(x, t, ul) for l = 1, . . . ,m, j ∈ N. Then, the stochastic
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system (f, g) satisfies the comparison principle.

It is a well-known result in the deterministic theory of PDEs that the quasi-monotonicity
of the interaction function f ensures that the system (f, 0) satisfies the comparison principle.
Hence, the condition on the functions gl

j stated in the previous theorem is sufficient to ensure
the persistence of this property of the solutions under stochastic perturbations. As mentioned
before, this theorem was stated in [2]. However, we present a slightly modified proof in order
to illustrate the general strategy outlined in the previous section.

Proof. — Step 1 - Quasi-monotonicity of the associated unperturbed system of

stochastic PDEs

We are looking for a function F such that F + 1
2

∑∞
j=1 q2

j hj = f , where the functions hj

were defined in the previous section. This implies

F l = f l − 1
2

∞∑
j=1

q2
j h

l
j = f l − 1

2

∞∑
j=1

q2
j

m∑
i=1

gi
j

∂gl
j

∂ui
= f l − 1

2

∞∑
j=1

q2
j g

l
j

∂gl
j

∂ul
,

l = 1, . . . ,m, j ∈ N, because the functions gl
j depend on the component ul of the solution

only.
Furthermore, f is assumed to be quasi-monotone, that is

f l(x, t, v1, . . . , vl−1, ũ, vl+1, . . . , vm) ≤ f l(x, t, u1, . . . , ul−1, ũ, ul+1, . . . , um),

for all (x, t) ∈ O× [0, T ], whenever vk ≤ uk for k = 1, . . . ,m. Due to the assumption that the
functions gl

j are independent of uk, k 6= l, it therefore follows

f l(x, t, v1, . . . , vl−1, ũ, vl+1, . . . , vm)− 1
2

∞∑
j=1

q2
j g

l
j(x, t, ũ)

∂gl
j

∂ũ
(x, t, ũ) ≤

≤ f l(x, t, u1, . . . , ul−1, ũ, ul+1, . . . , um)− 1
2

∞∑
j=1

q2
j g

l
j(x, t, ũ)

∂gl
j

∂ũ
(x, t, ũ),

that is, the function F is quasi-monotone as well,

F l(x, t, v1, . . . , vl−1, ũ, vl+1, . . . , vm) ≤ F l(x, t, u1, . . . , ul−1, ũ, ul+1, . . . , um),

for vk ≤ uk and all (x, t) ∈ O × [0, T ], l = 1, . . . m.
Step 2 - Preservation of quasi-monotonicity by the system of random PDEs

The associated system of random PDEs for (F, g) is given by (Fε,ω, 0), where the function

F l
ε,ω = F l +

∑∞
j=1 qjg

l
jẆ

j
ε . As the smooth approximations W j

ε of the Wiener process depend
only on the time t and ω ∈ Ω, and the functions gl

j depend only on the component ul of the
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solution, for l = 1, . . . ,m, j ∈ N, it follows

F l(x, t, v1, . . . , vl−1, ũ, vl+1, . . . , vm) +
∞∑

j=1

qjg
l
j(x, t, ũ)Ẇ j

ε (t) ≤

≤ F l(x, t, u1, . . . , ul−1, ũ, ul+1, . . . , um) +
∞∑

j=1

qjg
l
j(x, t, ũ)Ẇ j

ε (t),

for all (x, t) ∈ O × [0, T ] and vk ≤ uk, where we used the quasi-monotonicity of the function
F . This is equivalent to

F l
ε,ω(x, t, v1, . . . , vl−1, ũ, vl+1, . . . , vm) ≤ F l

ε,ω(x, t, u1, . . . , ul−1, ũ, ul+1, . . . , um),

for all ε > 0 and ω ∈ Ω. Hence, the property of quasi-monotonicity is preserved by the system
of random PDEs.

To the system of random PDEs (Fε,ω, 0) we may apply the comparison theorem for deter-
ministic systems. As a consequence, if the initial data u0 and v0 satisfy u0(x, ω) ≤ v0(x, ω)

for almost all x ∈ O, ω ∈ Ω, we conclude

uε(x, t, ω) ≤ vε(x, t, ω)

for all ε > 0, ω ∈ Ω and almost all (x, t) ∈ O × [0, T ].
Step 3 - Passage to the limit when ε goes to zero

By the Wong-Zakaï approximation theorem and our construction of the function F , the
solutions of the system of random PDEs (Fε,ω, 0), ω ∈ Ω, converge in expectation to the
solution of the initial system of stochastic PDEs (f, g). Hence, taking the limit when ε goes
to zero, we obtain

u(t, x) ≤ v(t, x), (t, x) ∈ O × [0, T ],

almost surely, which concludes the proof of the theorem.

3. A Positivity Criterion for Systems of Stochastic PDEs

In order to study the positivity of solutions of a given stochastic system (f, g) of PDEs
we follow the strategy outlined in Part II, Section 2. For a general stochastic perturbation
determined by the functions gj = (g1

j , . . . , g
m
j ), j ∈ N, the associated unperturbed system

(F, 0) of PDEs is given by

F l = f l − 1
2

∞∑
j=1

q2
j

(
g1
j

∂gl
j

∂u1
+ · · ·+ gm

j

∂gl
j

um

)
.

In the first part of our article we proved that the deterministic system (f, 0) satisfies the
positivity property if and only if the components f l of the interaction function satisfy

f l(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) ≥ 0, for all (x, t) ∈ O × [0, T ], uk ≥ 0,(18)
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for k, l = 1, . . . ,m. This motivates the following definition.

Definition 6. — We say that the function

f : O × [0, T ]× Rm → Rm, f(x, t, u) = (f1(x, t, u), . . . , fm(x, t, u)),

satisfies the positivity condition if all components f l, 1 ≤ l ≤ m satisfy the property (18).

The following lemma will be essential for the proof of our main result.

Lemma 1. — Let (f, g) be a given stochastic system of PDEs. We assume that the functions
gl
j are twice continuously differentiable with respect to uk and satisfy

gl
j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) = 0

for all j ∈ N and k, l = 1, . . . ,m. Then, the following statements are equivalent:

(a) The function f satisfies the positivity condition.
(b) The modified function F satisfies the positivity condition.
(c) The associated random functions Fε,ω satisfy the positivity condition for all ε > 0 and

ω ∈ Ω.

Proof. — The proof is a simple computation. As the functions gl
j are continuously differen-

tiable with respect to ul and gl
j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) = 0 we can represent them

in the form gl
j(x, t, u) = ulGl

j(x, t, u) with a continuously differentiable function Gl
j , for all

j ∈ N and l = 1, . . . ,m. Consequently, we obtain for the sum appearing in the Wong-Zakaï
correction term

m∑
i=1

gi
j

∂gl
j

∂ui
=

m∑
i=1

gi
j

∂(ulGl
j)

∂ui
=
∑
i6=l

gi
ju

l
∂Gl

j

∂ui
+ gl

j

∂(ulGl
j)

∂ul
,

which leads to an associated function F of the form

F l = f l − 1
2

∞∑
j=1

q2
j

m∑
i=1

gi
j

∂gl
j

∂ui
= f l − 1

2

∞∑
j=1

q2
j

∑
i6=l

gi
ju

l
∂Gl

j

∂ui
+ gl

j

∂(ulGl
j)

∂ul

 .

Due to the assumption gl
j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) = 0 we note that the function

F satisfies the positivity condition if and only if f satisfies the positivity condition as all
correction terms vanish when ul = 0. Finally, the associated system of random PDEs (Fε,ω, 0)

is given by

F l
ε,ω = F l +

∞∑
j=1

qjg
l
jẆ

j
ε .

The imposed condition on the functions gl
j therefore implies

F l
ε,ω(x, t, v) = F l(x, t, v) = f l(x, t, v),
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where v := (x, t, u1, . . . , ul−1, 0, ul+1, . . . , um), 1 ≤ l ≤ m, which proves that f satisfies the
positivity condition if and only if Fε,ω satisfies the positivity condition and concludes the proof
of the lemma.

Applying Lemma 1 we are in position to prove our main result. The following theorem yields
necessary and sufficient conditions for the stochastic system (f, g) to satisfy the positivity
property. In particular, it allows us to characterize the class of stochastic perturbations such
that the solutions of (f, g) preserve positivity.

Theorem 5. — Let (f, g) be a system of stochastic PDEs. We assume that the functions gl
j

are twice continuously differentiable with respect to uk, for all j ∈ N and k, l = 1, . . . ,m.
Then, the system (f, g) satisfies the positivity property if and only if the interaction function
f satisfies the positivity condition and

gl
j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) = 0 (x, t) ∈ O × [0, T ], uk ≥ 0,

for all j ∈ N and k, l = 1, . . . ,m.

Proof. — Sufficiency: We assume system (f, g) satisfies the stated conditions. In order
to show the positivity of solutions we follow the same strategy as in the proof of Theorem 4.
First, associate to the given system (f, g) the unperturbed system of PDEs (F, 0) and consider
the corresponding family of random approximations (Fε,ω, 0). The function g satisfies the
hypothesis of Lemma 1 and f the positivity condition, so it follows that the random functions
Fε,ω satisfy the positivity condition for all ε > 0 and ω ∈ Ω. The solutions of the random
system (Fε,ω, 0) converge in expectation to the solution of the original system (f, g) by Theorem
3. Hence, the positivity of the solutions follows exactly as in the proof of Theorem 4.
Necessity: We assume the solution of the stochastic system (f, g) remains non-negative for
t > 0. In order to show that the stated conditions are necessary we first prove that if

gl
j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) 6= 0,

the system (Fε,ω, 0) does not satisfy the positivity property. In fact, if the random system
(Fε,ω, 0) satisfies the positivity property, the function Fε,ω necessarily satisfies the positivity
condition. Consequently, for all l = 1, . . . ,m and (x, t) ∈ O × [0, T ] the inequality

F l
ε,ω(x, t, v) = F l(x, t, v) +

∞∑
j=1

qjg
l
j(x, t, v)Ẇ j

ε (t) ≥ 0(19)

holds, where v := (u1, . . . , ul−1, 0, ul+1, . . . , um) with u1, . . . , um ≥ 0. The derivative of the
smooth approximation Wε(t) of the Wiener process takes arbitrary values. Hence, if we
assume that gl

j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) is different from zero, then for sufficiently
small ε > 0 we always find an ω ∈ Ω such that inequality (19) is violated. Consequently,
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the random system (Fε,ω, 0) does not satisfy the positivity property, which contradicts our
assumption and proves that gl

j(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) = 0 for all j ∈ N, 1 ≤ l ≤ m.
Furthermore, if the functions gl

j satisfy this condition, inequality (19) now implies that the
function F necessarily satisfies the positivity condition. By Lemma 1, this is the case if and
only if the interaction function f of the original system satisfies the positivity condition, which
concludes the proof of our theorem.

Next, we prove that the same result (see below Corollary 1) is valid if we apply Stratonovich’s
interpretation of stochastic differential equations. In other words, the positivity property of
solutions is independent of the choice of interpretation, which is the statement of Theorem 1
in the introduction.

Corollary 1. — Let (f, g) be a system of stochastic (Itô) PDEs. We assume that the func-
tions gl

j are twice continuously differentiable with respect to uk, for all j ∈ N and k, l =

1, . . . ,m. Then, the corresponding system obtained when using Stratonovich’s interpretation
of the stochastic system satisfies the positivity property if and only if the functions f and g

satisfy the conditions of the previous theorem.

Proof. — The Wong-Zakaï correction term coincides with the transformation relating Ito’s
and Stratonovich’s interpretation of the stochastic system. That is, the solutions of the ran-
dom approximations (fε,ω, 0) converge to the solution of the given stochastic system, when
interpreted in the sense of Stratonovich. Hence, the statement of the corollary is an immediate
consequence of Theorem 5 and Lemma 1.

4. Necessary and Sufficient Conditions for Comparison Principles

As a direct consequence of the positivity criterion we obtain necessary and sufficient con-
ditions for the stochastic system to satisfy the comparison principle.

Theorem 6. — Let (f, g) be a system of stochastic PDEs. We assume that the functions gl
j

are twice continuously differentiable with respect to uk, for all j ∈ N and 1 ≤ k, l ≤ m. Then,
the system (f, g) satisfies the comparison principle if and only if the interaction function f is
quasi-monotone and the functions gl

j depend on the component ul of the solution only, that is

gl
j(x, t, u1, . . . , um) = gl

j(x, t, ul)

for all j ∈ N, 1 ≤ l ≤ m.

Proof. — Let u0 and v0 be given initial data satisfying u0(x, ω) ≥ v0(x, ω) for all x ∈ O,ω ∈ Ω.
Applying Theorem 5 we derive necessary and sufficient conditions to ensure that the order is
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preserved by the corresponding solutions. As the differential operator A is linear, the function
w := u− v is a solution of the stochastic system (f̃ , g̃) with

f̃ l(x, t, w) := f l(x, t, u)− f l(x, t, v) and g̃l
j(x, t, w) := gl

j(x, t, u)− gl
j(x, t, v)

for j ∈ N, 1 ≤ l ≤ m. Furthermore, by the definition of w the original system (f, g) satisfies the
comparison principle if and only if the system (f̃ , g̃) satisfies the positivity property. Theorem
5 yields necessary and sufficient conditions for the latter. Namely, system (f̃ , g̃) satisfies the
comparison principle if and only if the function f̃ satisfies the positivity condition and

g̃l
j(x, t, w1, . . . , wl−1, 0, wl+1, . . . , wm) = 0

holds for all j ∈ N and 1 ≤ l ≤ m. The positivity condition for f̃ is equivalent to the quasi-
monotonicity of the function f , which proves the stated condition on the interaction function.
Moreover, the function g̃ satisfies

g̃l
j(x, t, w1, . . . , wl−1, 0, wl+1, . . . , wm) = 0

for w ≥ 0 if and only if the equality

g̃l
j(x, t, u1, . . . , ul−1, ũ, ul+1, . . . , um) = gl

j(x, t, v1, . . . , vl−1, ũ, vl+1, . . . , vm)

holds for all ũ ∈ R, u ≥ v. This shows that the functions gl
j depend on the component ul of

the solution only.

Theorem 6 shows that the conditions imposed on the stochastic perturbation g and the
interaction function f by Chueshov and Vuillermot in Theorem 4 are not only sufficient but
also necessary to ensure that the stochastic system satisfies the comparison principle. As in
the case of positivity, the necessary and sufficient conditions for the comparison principle are
also valid, when the stochastic system is interpreted in the sense of Stratonovich.

Corollary 2. — Let (f, g) be a system of stochastic PDEs. We assume that the functions
gl
j are twice continuously differentiable with respect to uk, for all j ∈ N and 1 ≤ k, l ≤

m. Then, the corresponding system obtained when using Stratonovich’s interpretation of the
stochastic system satisfies the comparison principle if and only if the functions f and g satisfy
the conditions of the previous theorem.

Proof. — From the proof of Theorem 4 we deduce that, if the stochastic perturbations gl
j ,

j ∈ N, l = 1, . . . ,m, depend on the component ul of the solution only, then the following
statements are equivalent:

(a) The function f is quasi-monotone.
(b) The modified function F is quasi-monotone.
(c) The associated random functions Fε,ω are quasi-monotone for all ε > 0 and ω ∈ Ω.
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The solutions of the random approximations (fε,ω, 0) converge to the solution of the given
stochastic system, when interpreted in the sense of Stratonovich. Hence, the statement of the
corollary is an immediate consequence of Theorem 6 and the equivalence relations above.

As in the article [3] a direct consequence of our last theorem are necessary and sufficient
conditions for the stochastic system (f, g) to satisfy the comparison principle with respect to
an arbitrary order relation in Rm. To be more precise, let σ1 and σ2 be disjoint sets such that
σ1 ∪ σ2 = {1, . . . ,m}. For two vectors u and v in Rm we write u � v if{

uj ≥ vj for j ∈ σ1

uj ≤ vj for j ∈ σ2.

Corollary 3. — Let (f, g) be a system of stochastic PDEs. We assume that the functions gl
j

are twice continuously differentiable with respect to uk, for all j ∈ N and 1 ≤ k, l ≤ m. Then,
the system (f, g) satisfies the comparison principle with respect to the order relation � if and
only if the interaction function f satisfies{

f l(x, t, u) ≥ f l(x, t, v) l ∈ σ1

f l(x, t, u) ≤ f l(x, t, v) l ∈ σ2,

for x ∈ O, t > 0 and u, v ∈ Rm such that u � v and ul = vl, and the functions gl
j depend on

the component ul of the solution only, that is

gl
j(x, t, u1, . . . , um) = gl

j(x, t, ul)

for all j ∈ N, 1 ≤ l ≤ m.

Proof. — Let us define the function

wj :=

{
uj − vj if j ∈ σ1

vj − uj if j ∈ σ2.

Then, the solutions of system (f, g) satisfy the comparison principle with respect to the order
relation � if and only if the function w preserves positivity. By definition, w is a solution of
the system (f̃ , g̃) with

f̃ l(x, t, w) :=

{
f l(x, t, u)− f l(x, t, v) if j ∈ σ1

f l(x, t, v)− f l(x, t, u) if j ∈ σ2

g̃l(x, t, w) :=

{
gl(x, t, u)− gl(x, t, v) if j ∈ σ1

gl(x, t, v)− gl(x, t, u) if j ∈ σ2.

As in the proof of Theorem 6 we conclude that system (f̃ , g̃) satisfies the positivity criterion
if and only if the functions gl

j depend on the component ul of the solution only and the
interaction term f̃ satisfies the positivity condition. These conditions are equivalent to the
conditions on f and g stated in the theorem.
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Remark 2. — The same result is valid when the stochastic system is interpreted in the sense
of Stratonovich. This follows exactly as in the case of Theorem 6.

The intuitive interpretation of the conditions we obtained for the stochastic perturbations
is the following. In the critical case, when one component of the solution approaches zero, the
stochastic perturbation needs to vanish. Otherwise, the positivity of the solution cannot be
guaranteed. As for the validity of comparison principles, the critical situation occurs when the
components ul and vl of two given solutions attain the same value. Then, the other components
of the solution should have no influence on the intensity of the stochastic perturbation and
the stochastic perturbations in the equation for this component of the solution necessarily
coincide.
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