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16 route de Gray, 25030 Besançon cedex, France

E-mail: cresson@math.univ-fcomte.fr

Submitted by William F. Ames

Received August 11, 2000

We develop the notion of local fractional derivative introduced by Kolvankar
and Gangal. It allows a fine study of the local structure of irregular (fractal) func-
tions. Using this tool, we extend classical theorems of analysis (extrema, Rolle) to
non-differentiable functions. In particular, we prove a generalized Taylor expansion
theorem. We introduce a new derivative of real order and discuss its properties.
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INTRODUCTION

Several natural phenomena lead to irregular (“fractal”) objects. For
example, typical paths of quantum mechanical particles are continuous but
non-differentiable. Despite the ubiquity of non-differentiable structures in
nature, we have few mathematical tools to deal with.

An idea is to generalize the notion of derivative in order to take into
account non-differentiable functions. Many attempts already exists, in par-
ticular, the so-called fractional derivative of Riemann–Liouville, Liouville,
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Weyl, and Marchaud [1, 16]. They are all, more or less, based on a gener-
alization of the Cauchy formula. Hence, there is no geometric idea support-
ing these generalizations, explaining the difficulties of using it in order to
obtain information about the structure of non-differentiable objects. More-
over, fractional derivatives are all non-local on the contrary of the classical
derivative. For example, the Riemann–Liouville derivative depends on a
free parameter which relies on a global information on the function. The
study of non-differentiable functions via these operators is then difficult.

In this article, we solve this problem by introducing a notion of (right
or left) local fractional derivative, following a previous work of Kolwankar
and Gangal [5]. It is defined, at a point y, by taking the Riemann–Liouville
derivative of f �x� − f �y� and by tending the free parameter toward y. This
simple change induces many interesting properties.

First, contrary to Riemann–Liouville, the derivative of a constant func-
tion is zero. This allows us to generalize classical results of analysis
(extrema, Rolle, Taylor) to the non-differentiable case.

Second, we have a clear geometrical meaning of the derivative: it gives
the local Hölderian behavior of the function, and the critical order of
derivation is equal to the Hölder exponent.

In order to reconstruct the local behaviour of a non-differentiable func-
tion, it is necessary to have the right and left local fractional derivative.
We then introduce a new derivative, called the α-derivative, which summa-
rizes all the information that we need to perform this local analysis. The
α-derivative number is a complex number. When the function is differen-
tiable the imaginary part disappears and we obtain the usual derivative.

We introduce the space of �α functions (which possess an α-derivative)
and we study its properties.

1. LOCAL FRACTIONAL DERIVATIVE

1.1. Riemann–Liouville Differentiability

Let f be a continuous function on �a� b�. For all x ∈ �a� b�, we define the
left (resp. right) Riemann–Liouville integral at point x by

Iαa�−�f ��x� =
1
	�α�

∫ x
a
�x− t�α−1f �t�dt�

Iαb�+�f ��x� =
1
	�α�

∫ b
x
�t − x�α−1f �t�dt�

respectively.
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The left (resp. right) Riemann–Liouville derivative at x is given by

Dαa�−�f ��x� =
dI1−α
a�−�f ��x�
dx

�

Dαb�+�f ��x� =
dI1−α
b�+ �f ��x�
dx



Definition 1.1. We say that the function f admits a derivative of order
0 < α < 1 (Riemann–Liouville) at x ∈ �a� b� by below (resp. above) if
Dαa�−�f ��x� exists (resp. if Dαb�+�f ��x� exists).

Of course, we obtain different values of the Riemann–Liouville derivative
for different values of the parameter a (resp. b). Moreover, the derivative
of a constant C ∈ � is not equal to zero. Indeed, we have

Dαa�−�C��x� =
C

	�1− α�
1

�x− a�α 

These two remarks give rise to great difficulties in the geometric interpre-
tation of the Riemann–Liouville derivative [1]. In particular, there is no
relationship between the local geometry of the graph of f and its deriva-
tive.

Properties of the Riemann–Liouville Derivative. We refer to Podlubny [9]
for more details.

We have
dn

dtn
�Dpa�−�f ��t�� = Dn+pa�− �f ��t� (1)

On the contrary, we have

D
p
a�−

(
dnf �t�
dtn

)
�t� = Dp+na�− �f ��t� −

n−1∑
j=0

f �j��a��t − a�j−p−n
	�1+ j − p− n�  (2)

The Riemann–Liouville derivative commutes with the usual derivative if
and only if f �k��a� = 0 for k = 0�    � n− 1.

We have also the following composition formula: let m− 1 ≤ p < m and
n− 1 ≤ q < n; then

D
p
a�−�Dqa�−�f ��t���t� = Dp+qa�− �f ��t� −

n∑
j=1

[
D
q−j
a�−�f ��t�

]
t=a
�t − a�−p−j
	�1− p− j� �

D
q
a�−�Dpa�−�f ��t���t� = Dp+qa� t �f ��t� −

m∑
j=1

([
D
p−j
a� t f �t�

]
t=a

)�t� �t − a�−q−j
	�1− q− j� 

In general, we have no commutation between Riemann–Liouville deriva-
tives. Commutation holds if and only if f �j��a� = 0� j = 0�    � r − 1 with
r = max�n�m� and similarly for the right fractional derivative.
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1.2. Local Fractional Derivative

In order to avoid these difficulties, Kolvankar and Gangal [5] have intro-
duced a notion of (right) local fractional derivative. In this section, we
develop this idea. In particular, we obtain a simple analytic expression for
the local fractional derivative (Theorem 1.1).

Definition 1.2. Let f be a continuous function on �a� b�; we call a
right (resp. left) local fractional derivative of f at y ∈ �a� b� the following
quantity

dασf �y� = lim
x→yσ D

α
y�−σ �σ�f − f �y����x�� (3)

for σ = ±, respectively.

We have the following obvious properties:

(i) (Gluing) If f is differentiable at x, we have

lim
α→1

dασf �x� = f ′�x�� σ = ±

(ii) We have dα±�C� = 0 for all C ∈ � and σ = ±.

Theorem 1.1. The (right or left) local fractional derivative of f , dασf �x�,
is equal to

dασf �x� = 	�1+ α� lim
y→xσ

σ�f �y� − f �x��
y − xα  (4)

We then obtain the notion of α-velocity introduced by Cherbit [4] in
his study of non-differentiable curves. The proof is based on a generalized
Taylor’s expansion theorem. We denote

Fσ�y� σ�x− y�� α� = Dαy�−σ �σ�f − f �y����x� (5)

Theorem 1.2. Let f be a continuous function such that dασf �y� exists for
α > 0, σ = ±; then

f �x� = f �y� + σ dασf �y�
	�1+ α� �σ�x− y��

α + Rσ�x� y�� (6)

with
Rσ�x� y� = σ

1
	�1+ α�

∫ x−y
0

dFσ�y� σt� α�
dt

�σ�x− y − t��αdt� (7)

and

lim
x→yσ

Rσ�x� y�
�σ�x− y��α = 0



about non-differentiable functions 725

Proof. We detail the proof for σ = +. The proof for σ = − is the same.
We omit the + index in the following formula. We have

f �x� − f �y� = 1
	�α�

∫ x−y
0

F�y� t� α�
�x− y − t�1−α dt

= 1
	�α�

[
F�y� t� α�

∫
�x− y − t�α−1 dt

]x−y
0

+ 1
	�α�

∫ x−y
0

dF�y� t� α�
dt

�x− y − t�
α

α

dt

Then,

f �x� − f �y� = dαf �y�
	�α+ 1��x− y�

α

+ 1
	�α+ 1�

∫ x−y
0

dF�y� t� α�
dt

�x− y − t�α dt

Hence, we have f �x� = f �y�+ dαf �y�
	�α+1� �x− y�α+R�x� y�. Moreover, we have

R�x� y�
�x− y�α =

1
	�α+ 1�

∫ x−y
0

dF�y� t� α�
dt

(
x− y − t
x− y

)α
dt

As
∣∣∣x−y−tx−y

∣∣∣ < 1, we obtain
∣∣∣ R�x�y��x−y�α

∣∣∣ < 1
	�α+1� �F�y� x− y� α� − dαf �y��. As

limx→y F�y� x − y� α� = dαf �y�, we deduce that limx→y
∣∣∣ R�x�y��x−y�α

∣∣∣ = 0, which
concludes the proof.

Theorem 1.1 follows easily from Theorem 1.2.
We then have the following notion of a local α-derivative:

Definition 1.3. Let I be an open interval of �� α ∈�0� 1� and let f be a
function on I. We say that f is right (resp. left) locally α-derivative at t0 ∈ I
if and only if the function t �−→ f �t�−f �t0�

σ�σ�t−t0��α , σ = + (resp. σ = −), admits a
limit in � when t → tσ0 .

As in the classical case, we have:

Proposition 1.1. Let f be a function on I ⊂ �� α ∈�0� 1�.
(i) If f is α-differentiable at t0, then f is continuous at this point.

(ii) If dα−f �t0� (resp. dα+f �t0�) exists, then f is left (resp. right) continu-
ous at t0.
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Of course, the α-right or α-left local derivatives may not exist. However,
the quantities always defined are

lim
x→x+0

f �x� − f �x0�
�x− x0�α

= �α+�x0��

lim
x→x+0

f �x� − f �x0�
�x− x0�α

= λα+�x0��

lim
x→x−0

f �x� − f �x0�
−�−�x− x0��α

= �α−�x0��

lim
x→x−0

f �x� − f �x0�
−�−�x− x0��α

= λα−�x0�

(8)

If �α+�x0� and λα+�x0� are finite and equal, then it is equal to the α-right
local derivative at x0. Similarly, if �α−�x0� = λα−�x0�, then it is equal to the
α-left local derivative at x0.

For f �x� = �x− x0�α if x > x0� 0 otherwise, we have�α+�x0� = λα+�x0� = 1
and �1

−�x0� = λ1
−�x0� = 0.

Examples. Let �a� b� = �0� 1�, let x1 = 1/2, let xk = 1/2+ 1/k, and let

f �x� = x− x1 +
∞∑
k=2

x− xkα
2k



The function f �x� is Hölderian with an exponent µ�x� = α for x �= 1/2
and µ�1/2� = 1. We have also dασf �xk� = σ

2k for k ≥ 2 and d1
σf �1/2� =

1−∑∞
k=2 2−k

√
k

2 and dνσf �x� = 0 for 0 < ν < α and x �= xk, k ≥ 1.
Let Q = �xk�∞k=1 be an ordered sequence of rational numbers in �0� 1�.

We denote Q = ⋃
l Ql, where �xli� ∈ Ql if 1

l+1 < xli − 1/2 < l−1. We define

f �x� = x− x0 +
∞∑
l=2

2−l
∞∑
i=1

xli − xδ
l
i2−i�

x0 =
1
2
� δli ∈�0� 1�� inf

l� i
δli = δ0

Then f �x� is Hölderian with an exponent µ�x� = δ0 for x �= 1/2 and
µ�1/2� = 1.

1.2.1. Local Fractional Derivative of Order α+ n �0 < α < 1� n ∈ ��
Definition 1.4. Let f ∈ Cn; the local fractional derivative of order α+

n of f is defined by

dα+nσ f �x� = dασf �n��x�� σ = ± (9)
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We can give a slightly different definition by writing

dα+nf �x� = lim
y→xD

α
x�σ

[
σ

(
f �x� −∑

k=0

f �k��y�
k!
�x− y�k

)]
�x� (10)

If f is of class Cn, then these two definitions coincide.

1.2.2. Taylor Expansion

We denote by C<k+1 the set of functions of class Ck, such that the
k + 1th derivative does not exist. We have the following generalization of
Thereom 1.2:

Theorem 1.3. Let 0 < α < 1� f ∈ C<k+1 such that dα+kf exists at y;
then

f �x� = f �y� +
k∑
i=1

f �i��y�
	�i+ 1��x− y�

i

+σ d
α
σf
�k+1��y�

	�k+ α+ 1� �σ�x− y��
k+α + Rσ�x� y�� (11)

with

lim
x→yα

Rσ�x� y�
�σ�x− y��k+α = 0

Proof. We detail the proof for σ = +. The σ = − case is similar. As
f ∈ C<k+1, the classical Taylor’s expansion theorem up to order k− 1 gives

f �x� = f �y� +
k−1∑
i=1

f �i��y�
	�i+ 1��x− y�

i +
∫ x
y

�x− t�k−1

�k− 1�! f
�k��t�dt

As f �k� admits a derivative of order α by assumption, we have for all
t ∈ �y� x�

f �k��t� = f �k��y� + �t − y�
α

	�α+ 1�d
k+αf �y� + o��t − y�α�

By integrating by part k− 1 times, we obtain

f �x�=f �y�+
k∑
i=1

f �i��y�
	�i+1��x−y�

i+ d
αf �k+1��y�
	�k+α+1��x−y�

k+α+o��x−y�k+α��

from which the result follows.
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1.2.3. Another Kind of Expansion

The Riemann–Liouville derivative of order n+ α� n ∈ �, and 0 < α < 1
is defined by

Dα+na�−�f ��x�=
dn+1In+1−α

a�− �f ��x�
dxn+1

and Dα+nb�+ �f ��x�=
dn+1In+1−α

b�+ �f ��x�
dxn+1 

(12)

We denote

�a+nσ �f ��y� = lim
x→yσ D

α+n
y�−σ �σ�f − f �y����x� (13)

A direct use of the additivity properties of Riemann–Liouville differentia-
tion (formula (1) or (2)) within formula (13) will not give (9).

Theorem 1.4. Let α ∈�0� 1�, and let f be a function �α+k�-differentiable
on �a� b� for all 0 ≤ k ≤ n. Let x0 ∈�a� b�. There exists δ > 0 such that for all
x ∈�x0 − δ� x0 + δ� we have

f �x� = f �x0� +
n∑
k=0

σ
�σ�x− x0��α+k
	�α+ k+ 1� �α+kσ f �x0� + Rn+1� σ�x� y� (14)

with

Rn+1�σ�x�y�=
σ

	�α+n+1�
∫ x−x0

0

dn+1Fσ�x0�σt�α�
dtn+1 �σ�x−x0−t��α+ndt�

and

lim
x→x0

∣∣∣∣ Rn+1� σ�x� x0�
�σ�x− x0��α+n

∣∣∣∣ = 0

Proof. We perform an integration by part from (6). We obtain

f �x� − f �y� = dαf �y�
	�α+ 1��x− y�

α + �x− y�
α+1

	�α+ 2�
dF�y� t� α�

dt

∣∣∣∣
t=0

+ 1
	�α+ 2�

∫ x−y
0

d2F�y� t� α�
dt2

�x− y − t�α+1 dt

F�y� x − y� α� = Dαy�−��f − f �y����x�, where y is a given constant. We
denote x− y = t. We then have F�y� t� α� = Dαy�−��f − f �y����t + y�; hence

dF�y� t� α�
dt

= d

dt
�Dαy�−��f − f �y����t + y��
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As x − y = t and dx = dt, we have dF�y�t�α�
dt
t=0 = d

dx
�Dαy�−��f − f �y���

�x��x=y  Properties of the Riemann–Liouville derivative [8, 9] allow us to
write

d

dx
�Dαy�−��f − f �y����x��x=y = Dα+1

y�− ��f − f �y����x�x=y 

By definition of �α+n, we have dF�y�t�α�
dt
t=0 = �α+1f �y�, which gives

f �x� − f �y� = dαf �y�
	�α+ 1��x− y�

α + 1
	�α+ 2��x− y�

α+1�α+1f �y�

+ 1
	�α+ 2�

∫ x−y
0

d2F�y� t� α�
dt2

�x− y − t�α+1 dt

By integrating by part up to order n, we obtain

f �x� − f �y� =
n∑
k=0

�x− y�α+k
	�α+ k+ 1��

α+kf �y�

+ 1
	�α+ n+ 1�

∫ x−y
0

dn+1F�y� t� α�
dtn+1 �x− y − t�α+n dt

Denoting by Rn+1�x� y� the remainder, we see that∣∣∣∣Rn+1�x� y�
�x− y�α+n

∣∣∣∣ < 1
	�α+ n+ 1�

(∣∣∣ dn
dtn
F�y� t�α�

∣∣∣
t=x−y

−
∣∣∣�α+nf �y�

∣∣∣
)


We deduce that limx→y
∣∣Rn+1�x�y�
�x−y�α+n

∣∣ = 0.

Remark. There exists a Taylor’s expansion theorem for the Riemann-
Liouville derivative (see [11]). This result cannot be used to study the local
behaviour of non-differentiable functions. Indeed, it depends on an implicit
function. Moreover, the remainder is not controlled.

Theorem 1.5. Let α ∈�0� 1�, let σ = ±, and let I be an interval of �.

(i) If f is differentiable on I, then for all x ∈ I we have dασf �x� = 0.
(ii) The reverse of (i) is wrong.

Proof. (i) f is differentiable on I, then we have

dασf �x� = 	�1+ α� lim
y→xσ

σ
(
f �y� − f �x�)
y − xα 

= 	�1+ α� lim
y→xσ

σ
(
f �y� − f �x�)
y − x lim

y→xσ y − x
1−α

= 	�1+ α�f ′�x� lim
y→xσ y − x

1−α = 0

(ii) As dασ�Iαa�−σf �x���x� = 0 for all f , we deduce (ii).
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1.3. Non-differentiability and α-Derivative

Let f �t� be a continuous function on �a� b�. We remark that dα+f �x� �=
dα−f �x� in general. In the differentiable case, we have (by (ii), Sect. 1.2),
d1
+f �x� = d1

−f �x�. In other words, the non-differentiability of a function is
characterized by the existence of right and left local fractional derivatives,
which carry different information on the local behaviour of the function. It
is then necessary to introduce a new notion which takes into account these
two data.

Definition 1.5. Let f �t� be a continuous function on �a� b� such that
dασf �y� exists for σ = ± and y ∈ �a� b�. We define the α-derivative of f at
y, and we denote by f �α��y� the quantity

f �α��y� = d
α
+f �y� + dα−f �y�

2
+ id

α
+f �y� − dα−f �y�

2
� where i2 = −1 (15)

When α = 1 and f is non-differentiable, but possesses a right and left
derivative, we find the notion of differential time symmetry breaking dis-
cussed by Nottale [7] as a consequence of the“fractal” nature of space-time.

When f is differentiable, we have f �1��y� = f ′�y�. If f is 1-differentiable,
the non-differentiable is equivalent to the existence of an imaginary part
for the 1-derivative.

Definition 1.6. A function f is said α-differentiable if the α-derivative
exists at all points.

2. α-DERIVATIVE PROPERTIES

We give several properties of the local fractional derivative defined in
Section 1.2. We deduce general properties of the α-derivative introduced
in Section 1.3.

2.1. Local Fractional Derivative Properties

In the following, the proofs are always given for dα+f . The approach is
exactly the same for dα−f . We omit the index + and we will denote dαf for
dα+f .

Proposition 2.1. Let f and g be two continuous functions on �a� b�,
α-differentiable at x0, 0 < α < 1, and λ a real number. Then f + g, λf ,
and fg are α-differentiable at x0 and we have for σ = ±:

(i) dασ�f + g��x0� = dασ�x0� + dασg�x0�.
(ii) dασλf �x0� = λdασf �x0�.
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(iii) dασ�fg��x0� = dασf �x0� · g�x0� + f �x0� · dασg�x0�.
Proof. Points (i) and (ii) are obvious. For (iii), we have

dα�fg��x0� = 	�α� lim
x→x0

(
f �x� − f �x0�
�x− x0�α

g�x0� + f �x�
g�x� − g�x0�
�x− x0�α

)


We deduce Proposition 2.1.

Proposition 2.2. Let g and f be continuous functions on �a� b� and
�g�a�� g�b��, respectively. Let x0 ∈�a� b� such that dβσg�x0� and dασ sσ f �g�x0��
exist, with sσ = sign�dβσg�x0��, α�β ∈�0� 1�, σ = ±. Then, we have

dαβσ f ◦ g�x0� = sσdασsσ f �g�x0��dβσg�x0�α (16)

Proof. We have

σ�f �g�x�� − f �g�x0���
�σ�x− x0��αβ

= sσ σs
σ�f �g�x�� − f �g�x0���
�σsσ�g�x� − g�x0���α

(
sσ
σ�g�x� − g�x0��
�σ�x− x0��β

)α


Moreover, when x→ xσ0 we have g�x� → �g�x0��σsσ because

g�x� = g�x0� + σsσ
dβσg�x0�
	�1+ β� �σ�x− x0��β�1+ Rβ�x���

where Rβ�x� → 0 when x → xσ0 . We deduce that dαβσ f ◦ g�x0� = sσdασsσ
f �g�x0���sσdβσg�x0��α. This concludes the proof.

Proposition 2.3. Let f and g be continuous functions on �a� b� such that
g is not zero on �a� b�. If f and g admit a local fractional derivative of order
0 < α < 1 on �a� b� at x0, then

dασ

(
f

g

)
�x0� =

dασf �x0� · g�x0� − f �x0� · dασg�x0�
g2�x0�

 (17)

Proof. We have

dα
(
f

g

)
�x0� = 	�α� lim

x→x0

(
f
g

)
�x� −

(
f
g

)
�x0�

�x− x0�α
�

hence

dασ

(
f

g

)
�x0� = 	�α� lim

x→x0

(
f �x�−f �x0�
�x−x0�α g�x0� − f �x� g�x�−g�x0�

�x−x0�α
)

g�x�g�x0�


We deduce the proposition.
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2.2. α-Derivative Properties

In the following, we give several properties of α-derivatives (Definition
1.4). Proofs follow easily from the corresponding results in Section 2.1.

Proposition 2.4. Let f and g be continuous functions on �a� b�, such
that dασf �y� and dασg�y� exist for σ = ±� y ∈ �a� b�� 0 < α < 1, and λ a real
number. Then f + g� λf , and fg are α-differentiable at y and we have

(i) �f + g�α�y� = f α�y� + gα�y�.
(ii) �λf ��α��y� = λf �α��y�.

(iii) �fg��α��y� = f �α��y� · g�y� + f �y� · g�α��y�.
Proposition 2.5. Let g and f be continuous functions on �a� b� and
�g�a�� g�b��, respectively. Let x0 ∈�a� b� such that dβσg�x0� and dαsσ f �g�x0��
exist, α�β ∈�0� 1�. Then, we have

�f ◦ g��αβ��x0� = f �α��g�x0�� · s+dβ+g�x0�α

−dαs−f �g�x0�� ·
[
s+dβ+g�x0�α − s−dβ−g�x0�α

2

− i
2
�s+dβ+g�x0�α − s−dβ−g�x0�α�

]
� (18)

where sσ = sign�dβσg�x0��� σ = ±.
Remarks. (i) If g is differentiable at x0, with s = sign�g′�x��, then

�f ◦ g��α��x0� = s · f �α��g�x0�� · �s · g′�x0��α (19)

(ii) If f is differentiable at g�x0� and g is α-differentiable at x0, then

dασ�f ◦ g��x0� = f ′�g�x0�� · dασg�x0� (20)

Proposition 2.6. Let f and g be continuous functions on �a� b�, such
that dασf �y� and dασg�y� exist for σ = ±� y ∈ �a� b�� 0 < α < 1. If g is not
zero on �a� b� then

(
f

g

)�α�
�y� = f

�α��y� · g�y� − f �y� · g�α��y�
g2�y�  (21)

2.3. About Functions of Class �α

We define the set of functions of class �α� α ∈�0� 1�, and its precise prop-
erties.
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2.3.1. On the Set �α

Let ( be an open interval of �� α ∈�0� 1�; we denote by �α��(� the set
of continuous functions on �( which are α-differentiable on (.

Remark. We have C1 ⊂ �1. Indeed, when α = 1 and d1
+f �x� = d1

−f �x�
for all x, then f is differentiable.

We can define a norm on �α by

� f �α=� f �x� � + sup�� dα+f �x� �� � dα−f �x� �� x ∈ �� (22)

Lemma 2.1. Let γ� α ∈�0� 1�. For all γ < α, we have �α ⊂ �γ.

Proof. Let f ∈ �α. We have

f �x� = f �x0� + σ�σ�x− x0��α
(
dασf �x0�
	�1+ α� + R

α
σ�x�

)
�

where Rασ�x� → 0 when x→ xσ0 . We deduce

f �x� − f �x0�
�σ�x− x0��γ

= σ�σ�x− x0��α−γ
(
dασf �x0�
	�1+ α� + R

α
σ�x�

)


If γ < α, then dγσf �x0� = 0. This concludes the proof.

Properties of α-differentiation give:

Theorem 2.1. If f ∈ �α and g ∈ �β with β > α, we have

(i) fg ∈ �α,

(ii) f + g ∈ �α,

(iii) f/g ∈ �α if g �= 0.

Composition of functions has a complicated behaviour with respect to
differentiation. Precisely, we

Theorem 2.2. If f ∈ �α and g ∈ �β, then f ◦ g ∈ �αβ.

Proof. This follows easily from Proposition 2.2.

In other words, the set �α is only stable for composition by elements
of �1.
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2.3.2. Critical Order and Hölder Exponent

Let ( be an open interval of �� γ ∈�0� 1�. We denote by

C0� γ��(� =
{
f ∈ C��(�� sup

x� y∈(
x�=y

f �x� − f �y�
x− yγ <∞

}

the set of Hölderian functions with Hölder exponent γ. For more details
on these sets, we refer to [12–14].

Lemma 2.2. We have C0� γ��(� ⊂ �α��(� for γ > α.

Proof. Indeed, for all f ∈ C0� γ��(�� γ > α, we have dασf = 0.

As C0� γ��(� ⊂ C0� α��(� if γ > α, we are led to introduce the notion of
critical exponent:

Definition 2.1. Let ( be an open interval of �. We call the critical
exponent at x0 ∈ ( the largest α such that f is Hölderian with a Hölder
exponent α at x0.

A direct consequence of the Taylor’s expansion theorem is that f ∈
C0� γ��(� if f is γ-differentiable with dγσf �= 0. We then introduce the notion
of critical order:

Definition 2.2. Let ( be an open interval of �. We call the critical
order of f at x0 ∈ ( the smallest α ∈�0� 1� such that f is α-differentiable
at x0 and dασf �x0� �= 0.

We then have the following theorem:

Theorem 2.3. Let f be a function of critical exponent α at x0; then the
critical order of f at x0 is (if it exists) α.

Proof. This is a simple consequence of the definitions.

We have also:

Theorem 2.4. If f has a critical order α at x0, then f is Hölderian with
a critical exponent α.

Proof. As f has for critical order α at x0, we have dασf �x0� �= 0 and
f ∈ C0� α��(�. Assume that f has for critical exponent γ > α. Then, we
have dασf �x0� = 0. We have a contradiction. Hence, the critical exponent
is α.
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3. LOCAL GEOMETRY OF �α FUNCTIONS

3.1. Local Study

Non-differentiable curves are characterized by the appearance of
infinitely many new structures when one applies successive zooms. The
study of local geometrical properties of these kind of curves is then difficult.
In this section, we give some results in this direction.

3.1.1. About Infinitesimals

Let *x be an arbitrary small increment; we have ∀α ∈�0� 1�� *x
�σ*x�α → 0

when *x→ 0, with σ = ±1 depending on the sign of *x.
For all 0 < α1 < α2 < α3 < 1, we have

0 < *x < �*x�α3 < �*x�α2 < �*x�α1 < 1�

which means that *x depends also on α.
The local fractional derivative can be expressed via �*x�α by

dασf �x0� = 	�1+ α� lim
�σ*x�α→0

σ�f �x0 + σ*x� − f �x0��
�σ*x�α  (23)

3.1.2. Irregularity Criterion

Lebesgue’s theorem allows us to characterize non-differentiable func-
tions.

Theorem 3.1. Let ( be an open interval of �, and let f be a continuous
function.

(i) If for all x� y ∈ (, f is monotone, then f is differentiable almost
everywhere.

(ii) f is non-differentiable on ( if and only if the set

�O an open interval of (/∀x� y ∈ O�
sign�σ�f �x� − f �y��� = cst� σ = sign�x− y�� �

is empty, where σ = ±1.

Proof. (i) This is the content of Lebesgue’s theorem. For (ii), we assume
that f is non-differentiable on ( and that there exists an open interval O of
( such that sign�σ�f �x� − f �y��� = cst. Then f is monotone on O; hence
f is differentiable almost everywhere on O ⊂ (, which is a contradiction.
If f is differentiable on (, there exists an open interval O ⊂ ( such that
for all x� y ∈ O, sign�σ�f �x� − f �y��� = cst. We deduce the theorem.
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For all δ > 0, we denote by J−x �δ� (resp. J+x �δ�� the interval �x − δ� x�
(resp. �x� x+ δ��.
Proposition 3.1. Let f be a continuous function on �a� b��a < b�,

α-differentiable at x0 ∈�a� b��α ∈�0� 1��.
(i) σdα−f �x0� < 0⇐⇒ ∃δ > 0 such that ∀x ∈ J−x0

�δ�; we have σ�f �x� −
f �x0�� > 0, σ = ±.

(ii) σdα+f �x0� < 0⇐⇒ ∃ δ > 0 such that ∀x ∈ J+x0
�δ�; we have σ�f �x�−

f �x0�� < 0, σ = ±.
Proof. By Theorem 1.2, we have, for δ > 0 sufficiently small and x ∈

Jσx0
�δ�,

f �x� − f �x0� = σsσ  dασf �x0�  �σ�x− x0��α�1+ rσ�x���
with sσ = sign�dασf �x0�� and rσ�x� → 0 when x → xσ0 . The sign of
σ�f �x� − f �x0�� is sσ . This concludes the proof.

Proposition 3.2. Let f be a continuous function on �a� b� which is α-
differentiable at x0 ∈�a� b�, α ∈�0� 1�.

(i) if dα−f �x0� ≥ 0 and dα+f �x0� ≤ 0 ⇐⇒ x0 is a local maximum.
(ii) if dα−f �x0� ≤ 0 and dα+f �x0� ≥ 0 ⇐⇒ x0 is a local minimum.

Proof. We first prove (i). → follows from Proposition 3.1. For ← let
x0 ∈�a� b� be a local maximum. There exists δ > 0 such that for all x ∈
�x0 − δ� x0 + δ�, we have f �x� − f �x0� ≤ 0. For all x ∈�x0 − δ� x0�, the
ratio f �x�−f �x0�

−�x0−x�α ≥ 0. By taking the limit, we obtain dα−f �x0� ≥ 0. For all

x ∈ �x0� x0 + δ�, as f �x� − f �x0� ≤ 0, we deduce that f �x�−f �x0�
�x−x0�α ≤ 0, and we

obtain dα+f �x0� ≤ 0. The proof of (ii) is similar.

Generalized Rolle’s Theorem. Let f be a continuous and α-differ-
entiable function on �a� b�, α ∈�0� 1�, such that f �a� = f �b�; then there exists
a point c ∈�a� b� such that

dα−f �c� ≥ 0 and dα+f �c� ≤ 0 or dα−f �c� ≤ 0 and dα+f �c� ≥ 0 (24)

Proof. The proof follows from Proposition 3.2 as in the classical case.

Theorem 3.2. Let f and g be continuous and α-differentiable functions
on �a� b�, α ∈�0� 1�; then there exists a point c ∈�a� b� such that

σ�f �b� − f �a��dα−g�c� ≥ σ�g�b� − g�a��dα−f �c��
σ�f �b� − f �a��dα+g�c� ≤ σ�g�b� − g�a��dα+f �c��

where σ = ±.
Proof. We consider h�x� = f �x��g�b� − g�a�� − �f �b� − f �a��g�x�. The

function h is continuous and α-differentiable on �a� b�. As h�a� = h�b�, we
conclude the proof using Rolle’s theorem.
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4. CONCLUSION

The local fractional derivative allows us to obtain precise results on the
behaviour of non-differentiable functions. We refer to [2] for an application
of this formalism to scale divergence of graph of functions.

The α-derivative can be used to study irregular objects. For example, one
can define a generalized tangent space to non-differentiable manifolds (see
[3], Chap. 3).

These tools already apply to many physical problems: irregular signals
[6], fractional Brownian motion [4], and scale relativity [3].
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13. H. Brézis, “Analyse Fonctionnelle,” Masson, Paris, 1983.
14. Z. Ciesielski, On the isomorphisms of the space Hα and m, Bul. Acad. Pol. Sci. Sér. Sci.

Math. Astronom. Phys. 8 (1960), 217–222.
15. A. Ginzburg and N. Karapetyants, Fractional integrodifferentiation in Hölder classes of
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