Advanced Mechanics

 ISA-BTP 5 / M2
C. La Borderie

Institut Supérieur Aquitain du Bâtiment et des Travaux Publics Université de Pau et des Pays de l'Adour
2023-2024

Introduction

Non linear behaviour of structures

- Concerns the major part of it's behaviour
- Can be approximated by linear computation with asumptions \Rightarrow Security coefficients.
- Non linearities due to
- Geometrical (buckling, large
strains displacements)
- Material non linearities
(plasticity, cracking)
- Dynamic effects

Introduction

Non linear behaviour of structures

- Concerns the major part of it's behaviour
- Can be approximated by linear computation with asumptions \Rightarrow Security coefficients.
- Non linearities due to
- Geometrical (buckling, large strains displacements)

|

Introduction

Non linear behaviour of structures

- Concerns the major part of it's behaviour
- Can be approximated by linear computation with asumptions \Rightarrow Security coefficients.
- Non linearities due to
- Geometrical (buckling, large strains displacements)
- Material non linearities (plasticity, cracking)

Introduction

Non linear behaviour of structures

- Concerns the major part of it's behaviour
- Can be approximated by linear computation with asumptions \Rightarrow Security coefficients.
- Non linearities due to
- Geometrical (buckling, large strains displacements)
- Material non linearities (plasticity, cracking)
- Dynamic effects

Stress

introduction
(2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector :
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments
- Invariants of the stress tensor
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress
(a) Typical 1D non linear behaviour of materials
- Plasticity
- Damage :
(5) Introduction to the strain localization problem

ISA BTP

- Hardening and Softening

Stress

- Stresses represent the cohesive forces in a solid that allow the material to withstand the loading.
- Stresses are the result of interaction between small parts of the material (crystals, molecules... etc... etc...).
- The equivalent of stress for a perfect fluid is pressure.

Definition of the stress vector ：

balance equations

－For a solid Ω loaded by a set of mechanical actions and in balance with respect to a reference system，the balance equations are verified for any arbitrary part of Ω ．
－If we cut Ω by a plane of normal \vec{n} passing through point P ，the two parts Ω^{+}located on the normal side and Ω^{-}located on the opposite side，are in balance．

Definition of the stress vector :

balance equations

- For a solid Ω loaded by a set of mechanical actions and in
balance with respect to a reference system, the balance equations are verified for any arbitrary part of Ω.
- If we cut Ω by a plane of normal \vec{n} passing through point P, the two parts Ω^{+}located on the normal side and Ω^{-}located on the opposite side, are in balance.

Definition of the stress vector :

Ω^{-}is in balance under the effect :

- External forces exerted on it.
- From the stress vector $T(P, \vec{n})$ exerted at any point P of the cut-off plane.

Definition of the stress vector :

definition

The stress vector $\overrightarrow{T(P, \vec{n})}$ is the surface density of the forces exerted by Ω^{+}on Ω^{-}. It is the physical variable associated with the stress.

Remarks

(1) The stress vector is expressed in Pascals. $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}, 1 \mathrm{MPa}=10^{6} \mathrm{~Pa}, 1 \mathrm{GPa}=10^{9} \mathrm{~Pa}$ There are also more exotic units of use strongly discouraged : $1 \mathrm{~T} / \mathrm{m}^{2} \simeq 10 \mathrm{kPa}, 1 \mathrm{~kg} / \mathrm{cm}^{2} \simeq 100 \mathrm{kPa}, 1 \mathrm{bar}=$ $100 \mathrm{kPa}, 1 \mathrm{PSI} \simeq 6,9 \mathrm{MPa}$
(2) If at a given point $P T\left(P, \overrightarrow{n_{2}}\right) \neq T\left(P, \overrightarrow{n_{1}}\right)$.
(3) At two points P and Q of the same normal cut-off plane $T(P, \vec{n}) \neq T(Q, \vec{n})$
(1) The resulting actions from Ω^{+}on Ω^{-}for a normal cut-off plane Π of normal \vec{n} is :

$$
\left\{\begin{array}{c}
\overrightarrow{F_{\Omega^{+}} / \Omega^{-}}=\iint_{\Pi} \overrightarrow{T(P, \vec{n})} d s \\
\overrightarrow{M_{A, \Omega^{+} / \Omega^{-}}}=\iint_{\Pi} \overrightarrow{A P} \wedge \overrightarrow{T(P, \vec{n})} d s
\end{array}\right\}_{A}
$$

Normal and tangential stresses :

The stress vector is composed of a normal stress σ_{n} and a tangential stress $\overrightarrow{\tau_{n}}$. $\sigma_{n}=\overrightarrow{T(P, \vec{n})} \bullet \vec{n}$
$\overrightarrow{\tau_{n}}=\overrightarrow{T(P, \vec{n})} \bullet \vec{n}-\sigma_{n} \vec{n}$

- The normal stress σ_{n} is a number.
- The tangential stress $\overrightarrow{\tau_{n}}$ is a vector.

Stress

Projections on the reference vectors :

For a given reference system $\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right)$ of orthonormal vectors

- $\sigma_{11}=\overrightarrow{T\left(P, \overrightarrow{x_{1}}\right)} \bullet \overrightarrow{x_{1}}$
- $\sigma_{12}=\overrightarrow{T\left(P, \overrightarrow{x_{1}}\right)} \bullet \overrightarrow{x_{2}}$
- $\sigma_{13}=\overrightarrow{T\left(P, \overrightarrow{x_{1}}\right)} \bullet \overrightarrow{x_{3}}$

$$
\sigma_{i j}=\overrightarrow{T\left(P, \overrightarrow{x_{i}}\right)} \bullet \overrightarrow{x_{j}}
$$

Projections of $\overrightarrow{T\left(P, \overrightarrow{x_{1}}\right)}$

Cauchy stress tensor

On the pressure or tension in a solid body (1827)

Any part of a system in equilibrium is assumed to be in equilibrium itself, under the effect of the constrained vector applied to its boundary and a possible body force \vec{f}

Reciprocity of stress

- For a penny-shape of area ∂A, thickness ∂e and normal \vec{n}.
- $\partial^{2} e \rightarrow 0 \Rightarrow$ the participation of stress
 exerted on the slice tends to 0

Reciprocity of stress

- For a penny-shape of area ∂A, thickness ∂e and normal \vec{n}.
- $\partial^{2} e \rightarrow 0 \Rightarrow$ the participation of stress
 exerted on the slice tends to 0 .

Stress

Reciprocity of stress

－For a penny－shape of area ∂A ， thickness ∂e and normal \vec{n} ．
－$\partial^{2} e \rightarrow 0 \Rightarrow$ the participation of stress

exerted on the slice，tends to 0

$$
\overrightarrow{T(P, \vec{n})} \partial A+\overrightarrow{T(P,-\vec{n})} \partial A+\vec{f} \partial A \partial^{2} e=\overrightarrow{0}
$$

Stress

Reciprocity of stress

－For a penny－shape of area ∂A ， thickness ∂e and normal \vec{n} ．
－$\partial^{2} e \rightarrow 0 \Rightarrow$ the participation of stress

$\stackrel{\text { exerted on the slice tends }}{T(P, \vec{n})} \partial A+\overrightarrow{T(P,-\vec{n})} \partial A+\vec{f} \partial A \partial^{2} e=\overrightarrow{0}$

$$
\partial^{2} e \rightarrow 0 \Rightarrow \vec{f} \partial A \partial^{2} e \rightarrow 0
$$

Stress

Reciprocity of stress

－For a penny－shape of area ∂A ， thickness ∂e and normal \vec{n} ．
－$\partial^{2} e \rightarrow 0 \Rightarrow$ the participation of stress

exerted on the slice，tends to 0

$$
\begin{gathered}
\overrightarrow{T(P, \vec{n})} \partial A+\overrightarrow{T(P,-\vec{n})} \partial A+\vec{f} \partial A \partial^{2} e=\overrightarrow{0} \\
\partial^{2} e \rightarrow 0 \Rightarrow \vec{f} \partial A \partial^{2} e \rightarrow 0
\end{gathered}
$$

$$
\overrightarrow{T(P,-\vec{n})}=-\overrightarrow{T(P, \vec{n})}
$$

Linearity of the stress with respect to the normal vector :

- balance equations for a pyramidal volume around a given point P :
- $T(P, n) \partial A+T\left(P,-x_{1}\right) \partial A_{1}+$ $T\left(P,-\overrightarrow{x_{2}}\right) \partial A_{2}+T\left(P,-\overrightarrow{x_{3}}\right) \partial A_{3}=\overrightarrow{0}$
- $\vec{n}=\alpha \overrightarrow{x_{1}}+\beta \overrightarrow{x_{2}}+\gamma \overrightarrow{x_{3}}$, we have $\partial A_{1}=\alpha \partial A, \partial A_{2}=\beta \partial A, \partial A_{3}=\gamma \partial A$
- We then obtain

Linearity of the stress with respect to the normal vector :

- balance equations for a pyramidal volume around a given point P

- $\xrightarrow{T(P, \vec{n}) \partial A}+T\left(P \xrightarrow{P,-x_{1}}\right) \partial A_{1}+$ $T\left(P,-x_{2}\right) \partial A_{2}+T\left(P,-\overrightarrow{x_{3}}\right) \partial A_{3}=\overrightarrow{0}$
- $\vec{n}=\alpha \overrightarrow{x_{1}}+\beta \overrightarrow{x_{2}}+\gamma \overrightarrow{x_{3}}$, we have $\partial A_{1}=\alpha \partial A, \partial A_{2}=\beta \partial A, \partial A_{3}=\gamma \partial A$
- We then obtain

Linearity of the stress with respect to the normal vector :

- balance equations for a pyramidal volume around a given point P

- $\vec{n}=\alpha \overrightarrow{x_{1}}+\beta \overrightarrow{x_{2}}+\gamma \overrightarrow{x_{3}}$, we have: $\partial A_{1}=\alpha \partial A, \partial A_{2}=\beta \partial A, \partial A_{3}=\gamma \partial A$
- We then obtain

$$
\beta \partial A \overrightarrow{T\left(P,-\overrightarrow{x_{2}}\right)}+\gamma \partial A \overrightarrow{T\left(P,-\overrightarrow{x_{3}}\right)}=\overrightarrow{0}
$$

Linearity of the stress with respect to the normal vector :

- balance equations for a pyramidal volume around a given point P
$\cdot \begin{aligned} & \overrightarrow{T(P, \vec{n}) \partial A}+\overrightarrow{T\left(P,-x_{1}\right)} \partial A_{1}+ \\ & T\left(P,-x_{2}\right) \partial A_{2}+\overrightarrow{T\left(P,-x_{3}\right)} \partial A_{3}=\overrightarrow{0}\end{aligned}$
- $\vec{n}=\alpha \overrightarrow{x_{1}}+\beta \overrightarrow{x_{2}}+\gamma \overrightarrow{x_{3}}$, we have $\partial A_{1}=\alpha \partial A, \partial A_{2}=\beta \partial A, \partial A_{3}=\gamma \partial A$
- We then obtain :

$$
\begin{aligned}
& \partial A \overrightarrow{T(P, \vec{n})+\alpha \partial A} \overrightarrow{T\left(P,-\overrightarrow{\left.x_{1}\right)}+\right.} \\
& \beta \partial A \overrightarrow{T\left(P,-x_{2}\right)}+\gamma \partial A T\left(P,-x_{3}\right)
\end{aligned}=\overrightarrow{0}
$$

Linearity of the stress with respect to the normal vector :

- balance equations for a pyramidal volume around a given point P

- $\vec{n}=\alpha \overrightarrow{x_{1}}+\beta \overrightarrow{x_{2}}+\gamma \overrightarrow{x_{3}}$, we have $\partial A_{1}=\alpha \partial A, \partial A_{2}=\beta \partial A, \partial A_{3}=\gamma \partial A$
- We then obtain

$$
\overrightarrow{T\left(P, \alpha \overrightarrow{x_{1}}+\beta \overrightarrow{x_{2}}+\gamma \overrightarrow{x_{3}}\right)}=\alpha \overrightarrow{T\left(P, \overrightarrow{x_{1}}\right)}+\beta \overrightarrow{T\left(P, \overrightarrow{x_{2}}\right)}+\gamma \overrightarrow{T\left(P, \overrightarrow{x_{3}}\right)}
$$

Sress tensor

For $\overline{\overline{\sigma_{P}}}$, the function given at the point P which at a normal vector \vec{n} associates the stress vector $\overrightarrow{T(P, \vec{n})}$, we have demonstrated that it is a linear form of the space \mathbb{R}^{3} which allows it to be represented by a matrix.
$\overrightarrow{T(P, \vec{n})}=\overline{\overline{\sigma_{P}}}(\vec{n})$
$\overline{\overline{\sigma_{P}}}$ can be written with respect to the basis $\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right)$:

$$
\overline{\overline{\sigma_{P}}}:\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]_{\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right)}
$$

Symmetry of the stress tensor $\sigma_{i j}=\sigma_{j i}$

Balance equations of a cubic elementary volume Ω cubic (or square in 2D) of infinitesimal dimensions ∂a. This element is loaded by the stress vectors exerted on each face (or edge).

- For the face of normal \vec{x}_{1} : $T\left(P, \overrightarrow{x_{1}}\right)=\sigma_{11} \overrightarrow{x_{1}}+\sigma_{21} \overrightarrow{x_{2}}$
- For the face of normal $\overrightarrow{x_{2}}$:
$T\left(P, x_{2}\right)=\sigma_{12} \overrightarrow{x_{1}}+\sigma_{22} \overrightarrow{x_{2}}$
- For the face of normal $-\overrightarrow{x_{1}}$:
$T\left(P,-\overrightarrow{x_{1}}\right)=-\sigma_{11} \overrightarrow{x_{1}}-\sigma_{21} \overrightarrow{x_{2}}$
- For the face of normal- $\overrightarrow{x_{2}}$:

$T\left(P,-\overrightarrow{x_{2}}\right)=-\sigma_{12} \overrightarrow{x_{1}}-\sigma_{22} \overrightarrow{x_{2}}$

Symmetry of the stress tensor $\sigma_{i j}=\sigma_{j i}$

- For the face of normal $\overrightarrow{x_{1}}$:

$$
T\left(P, \overrightarrow{x_{1}}\right)=\sigma_{11} \overrightarrow{x_{1}}+\sigma_{21} \overrightarrow{x_{2}}
$$

- For the face of normal $\overrightarrow{x_{2}}$:

$$
T\left(P, x_{2}\right)=\sigma_{12} \overrightarrow{x_{1}}+\sigma_{22} \overrightarrow{x_{2}}
$$

- For the face of normal $-\overrightarrow{x_{1}}$:

$$
T\left(P,-\overrightarrow{x_{1}}\right)=-\sigma_{11} \overrightarrow{x_{1}}-\sigma_{21} \overrightarrow{x_{2}}
$$

- For the face of normal- $\overrightarrow{x_{2}}$:

$T\left(P,-\overrightarrow{x_{2}}\right)=-\sigma_{12} \overrightarrow{x_{1}}-\sigma_{22} \overrightarrow{x_{2}}$

momentum equation around $P \vec{x}_{3}$

$$
\begin{aligned}
& \frac{\partial a}{2} \overrightarrow{x_{1}} \wedge \sigma_{21} \partial a \overrightarrow{x_{2}}+\frac{\partial a}{2} \overrightarrow{x_{2}} \wedge \sigma_{12} \partial a \overrightarrow{x_{1}}-\frac{\partial a}{2} \overrightarrow{x_{1}} \wedge-\sigma_{21} \partial a \overrightarrow{x_{2}}-\frac{\partial a}{2} \overrightarrow{x_{2}} \wedge \\
& -\sigma_{12} \partial a \vec{x}_{1}=0 \\
& \frac{\partial a^{2}}{2} \sigma_{21}-\frac{\partial a^{2}}{2} \sigma_{12}+\frac{\partial a^{2}}{2} \sigma_{21}-\frac{\partial a^{2}}{2} \sigma_{12}=0
\end{aligned}
$$

Symmetry of the stress tensor $\sigma_{i j}=\sigma_{j i}$

the matrix $\overline{\overline{\sigma P}}$ is symetric

$\sigma_{12}=\sigma_{21}$

the matrix $\overline{\overline{\sigma_{P}}}$ is diagonalisable
The eigenvalues of $\overline{\overline{\sigma_{P}}}$ are also called principal stresses noted σ_{1}, σ_{2}, σ_{3}.

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}
$$

Symmetry of the stress tensor $\sigma_{i j}=\sigma_{j i}$

the matrix $\overline{\overline{\sigma P}}$ is symetric

$\sigma_{12}=\sigma_{21}$

the matrix $\overline{\overline{\sigma_{P}}}$ is diagonalisable
The eigenvalues of $\overline{\overline{\sigma_{P}}}$ are also called principal stresses noted σ_{1}, σ_{2}, σ_{3}.

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}
$$

Symmetry of the stress tensor $\sigma_{i j}=\sigma_{j i}$

the matrix $\overline{\overline{\sigma_{P}}}$ is symetric

$$
\begin{aligned}
\sigma_{12} & =\sigma_{21} \\
\sigma_{i j} & =\sigma_{j i}
\end{aligned}
$$

the matrix $\overline{\overline{\sigma_{P}}}$ is diagonalisable
The eigenvalues of $\overline{\overline{\sigma_{P}}}$ are also called principal stresses noted σ_{1}, σ_{2}, σ_{3}

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}
$$

Balance equations ：

－ $\iint_{\partial \Omega} \overrightarrow{T(P, \vec{n})} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
－ $\iiint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \vec{n} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

$$
\overline{\overline{\sigma_{P}}}:\left[\begin{array}{ccc}
0.5 & 1 & 0.2 \\
1 & 0.7 & 0 \\
0.2 & 0 & 0.3
\end{array}\right]
$$

Balance equations ：

－ $\iint_{\partial \Omega} \overrightarrow{T(P, \vec{n})} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
－ $\iint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \vec{n} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

$$
\overline{\overline{\sigma_{P}}}:\left[\begin{array}{ccc}
0.5 & 1 & 0.2 \\
1 & 0.7 & 0 \\
0.2 & 0 & 0.3
\end{array}\right]
$$

Balance equations :

- $\iint_{\partial \Omega} \overrightarrow{T(P, \vec{n})} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
- $\iint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \vec{n} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
- $\oiiint_{\Omega} \overline{\overline{\sigma_{P}}} \overrightarrow{d S}+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

Balance equations :

- $\iint_{\partial \Omega} \overrightarrow{T(P, \vec{n})} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
- $\iint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \vec{n} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
- $\oiiint_{\Omega} \overline{\overline{\sigma_{P}}} \overrightarrow{d S}+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

Balance equations :

Divergence theorem :

- $\iint_{\partial \Omega} \overrightarrow{T(P, \vec{n})} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
- $\iint_{\partial_{\Omega}} \overline{\overline{\sigma_{P}}} \vec{n} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
- $\oiiint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \overrightarrow{d S}+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

$$
\begin{aligned}
& \oiint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \overrightarrow{d S}=\iiint_{\Omega} \overrightarrow{\operatorname{div} \overrightarrow{\overline{\sigma_{P}}} d V} \\
& \iiint_{\Omega} \overrightarrow{\operatorname{div} \overrightarrow{\overline{\sigma_{P}}}+\vec{f} d V=\overrightarrow{0}, \quad \forall \Omega}
\end{aligned}
$$

Balance equations ：

Divergence theorem ：

－ $\iint_{\partial \Omega} \overrightarrow{T(P, \vec{n})} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

$$
\oiint_{\partial \Omega} \overrightarrow{\overline{\sigma_{P}}} \overrightarrow{d S}=\iiint_{\Omega} \overrightarrow{\operatorname{div} \overrightarrow{\overline{\sigma_{P}}} d V}
$$

－ $\iint_{\partial_{\Omega}} \overline{\overline{\sigma_{P}}} \vec{n} d S+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$
－$\oiint_{\partial \Omega} \overline{\overline{\sigma_{P}}} \overrightarrow{d S}+\iiint_{\Omega} \vec{f} d V=\overrightarrow{0}$

$$
\iiint_{\Omega} \overrightarrow{\operatorname{div} \overrightarrow{\overline{\sigma P}}}+\vec{f} d V=\overrightarrow{0}, \quad \forall \Omega
$$

Which demonstrates ：

$$
\overrightarrow{\operatorname{div} \overrightarrow{\bar{\sigma}}}+\vec{f}=\overrightarrow{0}
$$

(2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments
- Invariants of the stress tensor
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress

4 Typical 1D non linear behaviour of materials

- Plasticity
- Damage
(5) Introduction to the strain localization problem
- Hardening and Softening

Elastic stress strain relationship

Uniaxial experiments

（a）For ductile（b）For quasi－brittle
material material（concrete）

（b）
Nornal strain（ $\mathrm{mm} / \mathrm{mm}$ ）

Elastic stress strain relationship

Elastic stress strain relationship

Most materials exhibits a range where the relationship between stress and strain is reversible and linear.

$$
\varepsilon_{i j}=\frac{1+v}{E} \sigma_{i j}-\frac{v}{E} \sigma_{k k} \delta_{i j} ; \sigma_{i j}=\frac{E}{1+v}\left(\varepsilon_{i j}+\frac{v}{1-2 v} \varepsilon_{k k} \delta_{i j}\right)
$$

or

$$
\varepsilon_{i j}=S_{i j k l} \sigma_{k l} ; \sigma_{i j}=C_{i j k l} \varepsilon_{k l}
$$

Where E is the Young's modulus or modulus of elasticity and v is the Poisson's ratio, $S_{i j k l}$, the matrix of compliance, $C_{i j k l}$ its inverse, the matrix of elasticity.

Elastic stress strain relationship

Free energy

Energy of elasticity w_{e}

Is the quantity of energy stored into the material by deformation and by unit of volume. $w_{e}=\frac{1}{2} \sigma_{i j} \varepsilon_{i j}$

Helmholtz free energy Ψ_{e}

is the elastic energy by mass unit, $\Psi_{e}=\frac{w_{e}}{\rho}$

$$
\rho \Psi_{e}=\frac{1}{2} C_{i j k l} \varepsilon_{i j} \varepsilon_{k l}
$$

The Helmholtz free energy is a state potential in terms of thermodynamics

$$
\sigma_{i j}=\frac{\partial \rho \Psi}{\partial \varepsilon_{i j}}=C_{i j k l} \varepsilon_{i j}
$$

2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector :
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments :
- Invariants of the stress tensor :
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress
(4) Typical 1D non linear behaviour of materials
- Plasticity
- Damage :
(5) Introduction to the strain localization problem

ISA BTP

- Hardening and Softening

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Splitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal
- Bi-traction
- Triaxial test
- Bi-compression on concrete

Experiments :

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Splitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal
- Bi-traction
- Triaxial test
- Bi-compression on concrete

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Splitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal

- Bi-traction
- Triaxial test
- Bi-compression on concrete

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Snlitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Bi-traction
- Triavial test
- Bi-compression on concrete

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Snlitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal

$\mathrm{N}=3 / 4$ de cycle

- Bi-traction
- Triaxial test
- Bi-compression on concrete

Experiments :

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Snlitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal
- Bi-traction

- Triaxial test
- Bi-compression on concrete

Experiments :

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Snlitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal
- Bi-traction
- Triaxial test
- Bi-compression on concrete

Experiments :

Experiments

Uniaxial

- Tension test on ductile material
- Compression test for concrete
- Snlitting test (not really uniaxial)
- Tension test on concrete

multiaxial

- Tension torsion on a monocristal
- Bi-traction

- Triavial test
- Bi-compression on concrete

How results of experiments can be used in a general case?

results of experiments

- behaviour of a material in a particular condition
- mostly uniaxial
- tension strength f_{t}
- compression strength f_{c}

design a structure for a given loading

- The material must remain
elastic in most cases, or its
plasticity-damage must be
acceptable
- Each point of the structure owns a particular state of stress
- The state of stress is often
multi-axial

Problem ? ? ?
How to compare a tensor with a number?
ISA BTP
ECOLE D'INGEENIEURS

How results of experiments can be used in a general case？

results of experiments

－behaviour of a material in a particular condition
－mostly uniaxial
－tension strength f_{t}
－compression strength f_{c}
design a structure for a given loading
－The material must remain elastic in most cases，or its plasticity－damage must be acceptable
－Each point of the structure owns a particular state of stress
－The state of stress is often multi－axial

ISA BTP
ECOLE D＇INGÉNIEURS

How results of experiments can be used in a general case?

results of experiments

- behaviour of a material in a particular condition
- mostly uniaxial
- tension strength f_{t}
- compression strength f_{c}
design a structure for a given loading
- The material must remain elastic in most cases, or its plasticity-damage must be acceptable
- Each point of the structure owns a particular state of stress
- The state of stress is often multi-axial

Problem ? ? ?

How to compare a tensor with a number?
(2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments:
- Invariants of the stress tensor :
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress
(4) Typical 1D non linear behaviour of materials
- Plasticity
- Damage :
(5) Introduction to the strain localization problem
- Hardening and Softening

The stress tensor and its associated matrix

"Stress tensor" and "Stress matrix"

- The stress tensor is the linear form
- $\overline{\overline{\sigma_{P}}}: \vec{n} \rightarrow \overrightarrow{T(P, \vec{n})}$
- The associated matrix of $\overline{\overline{\sigma_{P}}}$ for a given reference $\left(\overrightarrow{x_{1}}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}\right)$ is $\left[\sigma_{i j}\right]$
- The individual value of each $\sigma_{i j}$ depends on the chosen reference and isn't physical representative.

Invariants

Numbers calculated from matrix that independent of the reference
－$I_{1}=\sigma_{11}+\sigma_{22}+\sigma_{33}=\operatorname{Tr}(\sigma)=\sigma_{k k}$
－$I_{2}=\frac{1}{2}\left((\operatorname{Tr} \sigma)^{2}-\operatorname{Tr}\left(\sigma^{2}\right)\right)$
$I_{2}=\sigma_{11} \sigma_{22}+\sigma_{22} \sigma_{33}+\sigma_{11} \sigma_{33}-\sigma_{12}^{2}-\sigma_{23}^{2}-\sigma_{13}^{2}$
－$I_{3}=\operatorname{Det}\left(\sigma_{i j}\right)$

In term of principal stresses

－$l_{1}=\sigma_{1}+\sigma_{2}+\sigma_{3}$
－$I_{2}=\sigma_{1} \sigma_{2}+\sigma_{2} \sigma_{3}+\sigma_{1} \sigma_{3}$
－$l_{3}=\sigma_{1} \sigma_{2} \sigma_{3}$

Stress deviator:

Experiment results

- For a lot of materials, the elasticity domain is independent of the hydrostatic pressure $\pi=\frac{l_{1}}{3}$.
- The stress deviator is obtained by subtracting the hydrostatic pressure to the stress tensor.

$$
S_{i j}=\sigma_{i j}-\pi \delta_{i j} \text { where } \delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } & i=j \\
0 & \text { if } \quad i \neq j
\end{array}\right. \text { is the Kronecker delta }
$$

$$
\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]=\left[\begin{array}{lll}
\sigma_{11} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}
\end{array}\right]-\left[\begin{array}{ccc}
\pi & 0 & 0 \\
0 & \pi & 0 \\
0 & 0 & \pi
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
S_{11} & S_{12} & S_{13} \\
S_{21} & S_{22} & S_{23} \\
S_{31} & S_{32} & S_{33}
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{11}-\pi & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & \sigma_{22}-\pi & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & \sigma_{33}-\pi
\end{array}\right]
$$

Von-Mises equivalent stress (1913) :

invariants of the stress deviator tensor

The first, second and third invariants of the stress deviator tensor are called J_{1}, J_{2} and J_{3}.

- $J_{1}=\operatorname{Tr}(S)=\sigma_{11}+\sigma_{22}+\sigma_{33}-3 \pi=0$
- $J_{2}=\frac{1}{2} \operatorname{Tr}\left(S^{2}\right)$ (the sign convention is at the opposite of the definition given for I_{2})

$$
\begin{aligned}
& J_{2}=\frac{1}{2}\left(S_{1}^{2}+S_{2}^{2}+S_{3}^{2}\right) \\
& J_{2}=\frac{1}{6}\left(\left(\sigma_{1}-\sigma_{2}\right)^{2}+\left(\sigma_{2}-\sigma_{3}\right)^{2}+\left(\sigma_{3}-\sigma_{1}\right)^{2}\right)
\end{aligned}
$$

Von Mises equivalent stress based on J_{2}

- must be homogeneous to a stress
- must be to the stress value in tension-compression

$$
\sigma_{e q}=\sqrt{3 J_{2}}
$$

Von Mises Criterium of elasticity

The criterium of elasticity based on this equivalent stress is given by the equation :

$$
\sigma_{e q}-\sigma_{y}=0
$$

Where σ_{y} is the yield stress in uniaxial stress condition.
The Von Mises stress is also known as the maximum energy of strain distorsion.

The Mohr Coulomb criterion

- Geomaterials (rocks, concrete) and most of quasi-brittle materials behaviour depends on the hydrostatic stress (ie different in tension and compression)
- The Coulomb criterium (1773), further studied by Mohr is based on the friction hypothesis

$$
\tau=\sigma_{n} \tan \Phi+C
$$

C: Cohesion
Φ : Friction angle

The Mohr Coulomb criterion

In terms of principal stresses $\sigma_{1} \geq \sigma_{2} \geq \sigma_{3}$

- $\sigma_{1}-\sigma_{3}=\left(\sigma_{1}+\sigma_{3}\right) \sin \Phi+2 C \cos \Phi$
- The uniaxial tensile strength σ_{t} is given for $\sigma_{t}=\sigma_{1}$,

$$
\begin{aligned}
& \sigma_{2}=\sigma_{3}=0: \\
& \sigma_{t}=\frac{2 C \cos \Phi}{1+\sin \Phi}
\end{aligned}
$$

- The uniaxial compressive strength σ_{c} is given for $\sigma_{c}=\sigma_{3}$,

$$
\begin{aligned}
& \sigma_{1}=\sigma_{2}=0: \\
& \sigma_{c}=-\frac{2 C \cos \Phi}{1-\sin \Phi}
\end{aligned}
$$

Invariants of the stress tensor :

The Drucker Prager criterion (1952) :

$$
\sqrt{J_{2}}=A+B I_{1}
$$

- In terms of σ_{t} and sigmac
- $A=\frac{2}{\sqrt{3}} \frac{\sigma_{t} \sigma_{c}}{\sigma_{c}-\sigma_{t}}$
- $B=\frac{1}{\sqrt{3}} \frac{\sigma_{t}+\sigma_{c}}{\sigma_{t}-\sigma_{c}}$
- equivalence with Mohr-Coulomb Parameters
- $A=\frac{6 C \cos \Phi}{\sqrt{3}(3-\sin \Phi)}$
- $B=\frac{2 \sin \Phi}{\sqrt{3}(3-\sin \Phi)}$

Invariants of the stress tensor :

The Drucker Prager criterion (1952) :

$$
\sqrt{J_{2}}=A+B I_{1}
$$

- In terms of σ_{t} and sigmac
- $A=\frac{2}{\sqrt{3}} \frac{\sigma_{t} \sigma_{c}}{\sigma_{c}-\sigma_{t}}$
- $B=\frac{1}{\sqrt{3}} \frac{\sigma_{t}+\sigma_{c}}{\sigma_{t}-\sigma_{c}}$
- equivalence with Mohr-Coulomb Parameters

- $A=\frac{6 C \cos \Phi}{\sqrt{3}(3-\sin \Phi)}$
- $B=\frac{2 \sin \Phi}{\sqrt{3}(3-\sin \Phi)}$

The Mazars' criterion (1984).

The Mazars' criterion is often use for concrete like materials modelled with damage. The idea of Mazars is that the non linearity of the material is generated by extension strains (i.e. positive strains).

$$
\tilde{\varepsilon}=\sqrt{\left\langle\varepsilon_{1}\right\rangle^{2}+\left\langle\varepsilon_{2}\right\rangle^{2}+\left\langle\varepsilon_{3}\right\rangle^{2}}
$$

where $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3} are the principal strains and \rangle designs the Macauley brackets $\langle x\rangle=\left\{\begin{array}{lll}x & \text { if } & x>0 \\ 0 & \text { if } & x \leq 0\end{array}\right.$. The threshold function is therefore writen as following

$$
\tilde{\varepsilon}-k(D)=0
$$

Where $k(D)$ is the yield strain depending of damage D. The inititial value is called $\varepsilon_{d 0}$ correspond to the limit of elasticity in ISA BTP positive strain.

Invariants of the stress tensor :

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

$$
\begin{aligned}
& \overline{\bar{\sigma}}:\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text {, then } \overline{\bar{\varepsilon}}: \\
& \text { in tension } \\
& \sigma_{11}=\sigma_{t}>0 \Rightarrow \varepsilon_{11}=\frac{\sigma_{t}}{E}> \\
& 0 ; \varepsilon_{22}<0 ; \varepsilon_{33}<0 \\
& \tilde{\varepsilon}=\frac{\sigma_{t}}{E}=\varepsilon_{d 0} \\
& \sigma_{t}=E \varepsilon_{d 0}
\end{aligned}
$$

Invariants of the stress tensor :

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

$$
\overline{\bar{\sigma}}:\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text {, then } \overline{\bar{\varepsilon}}:\left[\begin{array}{cc}
\frac{\sigma_{11}}{E} & 0 \\
0 & \frac{-v \sigma_{11}}{E} \\
0 & 0
\end{array}\right.
$$

$$
\sigma_{t}=E \varepsilon_{d 0}
$$

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

$$
\overline{\bar{\sigma}}:\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text {, then } \overline{\bar{\varepsilon}}:\left[\begin{array}{ccc}
\frac{\sigma_{11}}{E} & 0 & 0 \\
0 & \frac{-v \sigma_{11}}{E} & 0 \\
0 & 0 & \frac{-v \sigma_{11}}{E}
\end{array}\right]
$$

in compression

$$
\begin{aligned}
& \sigma_{11}=\sigma_{c}<0 \Rightarrow \varepsilon_{11}=\frac{\sigma_{t}}{E}> \\
& 0 ; \varepsilon_{22}<0 ; \varepsilon_{33}<0 \\
& \tilde{\varepsilon}=-\sqrt{2} \nu \frac{\sigma_{c}}{E}=\varepsilon_{d 0}
\end{aligned}
$$

$$
\sigma_{c}=-\frac{E \varepsilon_{d 0}}{\sqrt{2} v}
$$

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

$$
\overline{\bar{\sigma}}:\left[\begin{array}{ccc}
\sigma_{11} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \text {, then } \overline{\bar{\varepsilon}}:\left[\begin{array}{ccc}
\frac{\sigma_{11}}{E} & 0 & 0 \\
0 & \frac{-v \sigma_{11}}{E} & 0 \\
0 & 0 & \frac{-v \sigma_{11}}{E}
\end{array}\right]
$$

in compression

$$
\begin{aligned}
& \sigma_{11}=\sigma_{c}<0 \Rightarrow \varepsilon_{11}=\frac{\sigma_{t}}{E}> \\
& 0 ; \varepsilon_{22}<0 ; \varepsilon_{33}<0 \\
& \tilde{\varepsilon}=-\sqrt{2} \nu \frac{\sigma_{c}}{E}=\varepsilon_{d 0}
\end{aligned}
$$

$$
\sigma_{c}=-\frac{E \varepsilon_{d 0}}{\sqrt{2} v}
$$

The Mazars criterion (1984).

三 \ddagger の@

Introduction

(2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector:
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments
- Invariants of the stress tensor
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress
(4) Typical 1D non linear behaviour of materials
- Plasticity
- Damage
(5) Introduction to the strain localization problem

ISA BTP

- Hardening and Softening

Plasticity
 plasticity

- Plasticity is directly related to local slips / dislocations [1]
- $\varepsilon=\varepsilon^{e}+\varepsilon^{p}$
- elastic slope remains constant
- hardening or softening

$$
\sigma=E \varepsilon^{e}=E\left(\varepsilon-\varepsilon^{p}\right)
$$

Plastic strains

Isotropic Hardening

Isotropic hardening

Isotropic Hardening

Isotropic hardening

Isotropic yield function 탄

ISA BTP
ECOLE D'INGEENIEURS

Isotropic Hardening

yield function

- The limit of elasticity is increased of the hardening value R
- $\sigma_{\text {eq }}-\sigma_{y}-R=0$
- R is the hardening parameter (scalar)

Isotropic yield function

ISA BTP
ECOLE D'INGENIEURS

kinematic Hardening

IKinematic hardening

Plasticity

kinematic Hardening

Kinematic yield function

Plasticity

kinematic Hardening

yield function

- The "center of elasticity" is moved by the hardening value \mathbb{X}
- $\sigma_{e q}(\sigma-\mathbb{X})-\sigma_{y}=0$
- \mathbb{X} is the hardening parameter (tensor)

Kinematic yield function

Combined hardening

yield function

- The general cases combines Kinematic and Isotropic hardenings
- $\sigma_{\text {eq }}(\sigma-\mathbb{X})-\sigma_{y}-R=0$

Kinematic yield function

Introduction

(2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector :
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments
- Invariants of the stress tensor
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress
(4) Typical 1D non linear behaviour of materials
- Plasticity
- Damage :
(5) Introduction to the strain localization problem
- Hardening and Softening

Damage

The damage is linked to debonding of material and microcracking that accours at the mesoscopic level [1]

Microcracking into concrete

Damage

Damage

- Let δS be the intersection area of a given plane of normal \vec{n} with a Representative Elementary Volume (RVE).
- Let $\delta S_{D n}$ be the effective area of micro-cracks and micro-cavities within the intersection plane at the point M
- The value of damage is then defined by

$$
D(M, \vec{n})=\frac{\delta S_{D n}}{\delta S}
$$

projection of defects on a plane after Kachanov

Isotropic Damage

Classical hypothesis

－Damage is isotropic
－The damage variable is a real
$0<D<1$
－$D=0 \longrightarrow$ undamaged material
－$D=1 \longrightarrow$ fully broken material
－$\sigma=E(1-D) \varepsilon^{e}(1 \mathrm{D})$

Stress－strain relation exhibiting damage

(2)
 Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments
- Invariants of the stress tensor
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress
(4) Typical 1D non linear behaviour of materials
- Plasticity
- Damage :
(5) Introduction to the strain localization problem :
- Hardening and Softening

Hardening and Softening

Non linear behavior during a 1D tension test

- Stress is increasing \Longrightarrow hardening
- Stress is decreasing \Longrightarrow softening.

(a) Elastic

(b) Hardening

(c) Softening

Problem

2 solutions for a given load in case of softening

(2) Reminders on elasticity of materials

- Stress
- Definition of the stress vector
- Projections of the stress vector :
- Cauchy stress tensor
- Balance equations
- Elastic stress strain relationship
- Free energy
(3) Criteria of elasticity
- Experiments
- Invariants of the stress tensor
- Stress deviator
- Von-Mises equivalent stress (1913)
- Criteria that accounts for the hydrostatic stress

4. Typical 1D non linear behaviour of materials

- Plasticity
- Damage :
(5) Introduction to the strain localization problem :
- Hardening and Softening

tension test of a simple 1D bar AB

Test

- Initial length L
- Section Area \mathcal{A}
- Test performed by increasing the elongation δL

Test

- Initial length L
- Section Area \mathcal{A}
- Test performed by increasing the elongation δL

Material behaviour

- E is the modulous of elasticity
- ε_{0} is the threshold in tension
- ε_{r} is the fracture strain

tension test of a simple 1D bar AB

$$
\begin{aligned}
& \text { Stress strain relationship } \\
& \begin{cases}\varepsilon<\varepsilon_{0} & \sigma=E \varepsilon \\
\varepsilon>\varepsilon_{0} & \sigma=\frac{E \varepsilon_{0}}{\varepsilon_{0}-\varepsilon_{r}}\left(\varepsilon-\varepsilon_{r}\right)\end{cases}
\end{aligned}
$$

tension test of a simple 1D bar AB

Stress strain relationship

$$
\begin{cases}\varepsilon<\varepsilon_{0} & \sigma=E \varepsilon \\ \varepsilon>\varepsilon_{0} & \sigma=\frac{E \varepsilon_{0}}{\varepsilon_{0}-\varepsilon_{r}}\left(\varepsilon-\varepsilon_{r}\right)\end{cases}
$$

Balance equations

- $\frac{\partial \sigma}{\partial x}=0 \Rightarrow \sigma=\frac{F}{\mathcal{A}}$
- The stress is homogeneous along the bar

tension test of a simple 1D bar AB

Stress strain relationship

$$
\begin{cases}\varepsilon<\varepsilon_{0} & \sigma=E \varepsilon \\ \varepsilon>\varepsilon_{0} & \sigma=\frac{E \varepsilon_{0}}{\varepsilon_{0}-\varepsilon_{r}}\left(\varepsilon-\varepsilon_{r}\right)\end{cases}
$$

Balance equations

－$\frac{\partial \sigma}{\partial x}=0 \Rightarrow \sigma=\frac{F}{\mathcal{A}}$
－The stress is homogeneous along the bar

－ 2 solutions ：elastic path or non linear path

tension test of a simple 1D bar AB

Stress strain relationship

$$
\begin{cases}\varepsilon<\varepsilon_{0} & \sigma=E \varepsilon \\ \varepsilon>\varepsilon_{0} & \sigma=\frac{E \varepsilon_{0}}{\varepsilon_{0}-\varepsilon_{r}}\left(\varepsilon-\varepsilon_{r}\right)\end{cases}
$$

Balance equations

- $\frac{\partial \sigma}{\partial x}=0 \Rightarrow \sigma=\frac{F}{\mathcal{A}}$
- The stress is homogeneous along the bar
- 2 solutions : elastic path or non linear path

At least one point must follow the non linear path

Homogeneous solution

Hypothesis

－All points are following the non linear path
－Plastic strains or damage are identical along the bar
－Total strains are identical along the bar
－The final length of the bar is $L \varepsilon_{r}$

Etherogeneous solution

Hypothesis

- a part of the specimen is following the non linear path while the other is following the linear path.

$$
\sigma=\frac{F}{\mathcal{A}}
$$

- $\varepsilon=\frac{\sigma}{E}=\frac{F}{E \mathcal{A}}$

- $\varepsilon=\ldots$.

Etherogeneous solution

Hypothesis

- a part of the specimen is following the non linear path while the other is following the linear path.

$$
\begin{aligned}
\sigma & =\frac{F}{\mathcal{A}} \\
& \text { - } \varepsilon=\frac{\sigma}{E}=\frac{F}{E \mathcal{A}} \\
& \text { - } \varepsilon=\varepsilon_{r}-\frac{F}{E \mathcal{A}} \frac{\varepsilon_{0}}{\varepsilon_{r}-\varepsilon_{0}}
\end{aligned}
$$

Etherogeneous solution

Hypothesis

- The length of the non linear part is $\frac{L}{n}$,
- The lengh of the linear part is L $\frac{n-1}{n}$
- $n \in \mathbb{N}, n>1$.

Elongation

- $\delta L_{e}=\ldots$
- $\delta L_{n I}=\ldots$

Etherogeneous solution

Hypothesis

- The length of the non linear part is $\frac{L}{n}$,
- The lengh of the linear part is L $\frac{n-1}{n}$
- $n \in \mathbb{N}, n>1$.

Elongation

- $\delta L_{e}=\frac{F}{E \mathcal{A}} L \frac{n-1}{n}$
- $\delta L_{n I}=\left(\varepsilon_{r}-\frac{F}{E \mathcal{A}} \frac{\varepsilon_{0}}{\varepsilon_{r}-\varepsilon_{0}}\right) \frac{L}{n}$

Etherogeneous solution

Hypothesis

- The length of the non linear part is $\frac{L}{n}$,
- The lengh of the linear part is L $\frac{n-1}{n}$
- $n \in \mathbb{N}, n>1$.

Elongation

- $\delta L_{e}=\frac{F}{E \mathcal{A}} L^{n-1} \frac{n}{n}$

- $\delta L_{n I}=\left(\varepsilon_{r}-\frac{F}{E \mathcal{A}} \frac{\varepsilon_{0}}{\varepsilon_{r}-\varepsilon_{0}}\right) \frac{L}{n}$

$$
\delta L=\frac{F}{E \mathcal{A}} L \frac{n-1}{n}+\left(\varepsilon_{r}-\frac{F}{E \mathcal{A}} \frac{\varepsilon_{0}}{\varepsilon_{r}-\varepsilon_{0}}\right) \frac{L}{n}
$$

Etherogeneous solution

Breaking elongation δL_{r}

- $F=0$
- $\delta L_{r}=\varepsilon_{r} \frac{L}{n}$
- strain of elastic elements $=0$.
- strain of non linear elements ε_{r}
- $\frac{\varepsilon_{c} r}{n}<\varepsilon_{0} \Longrightarrow \delta L_{r}<\delta L_{e}=$ $L \varepsilon_{0} \Longrightarrow$ instability

Etherogeneous solution

Dissipated energy W_{f}

－$W_{f}=\int_{0}^{\delta L_{r}} F \mathrm{~d} \delta L$
－W_{f} is the area under the curve
－$W_{f}=\frac{E \varepsilon_{0} \mathcal{A}}{2} \varepsilon_{r} \frac{L}{n}$
－ $\lim _{n \rightarrow+\infty} W_{f}=0$

嗇 J. Lemaître.
A course on damage mechanics. Springer-Verlag, Berlin; New York, 1992.

