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Introduction

Introduction

Non linear behaviour of structures

@ Concerns the major part of it's
behaviour

@ Can be approximated by linear
computation with asumptions
= Security coefficients.

@ Non linearities due to
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Introduction

Introduction

Non linear behaviour of structures

@ Concerns the major part of it's
behaviour

@ Can be approximated by linear
computation with asumptions
= Security coefficients.

@ Non linearities due to

o Geometrical (buckling, large
strains displacements)
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Introduction

Introduction

@ Concerns the major part of it's
3.-.. (=Jee(+)

behaviour

@ Can be approximated by linear
computation with asumptions
= Security coefficients.

@ Non linearities due to

o Material non linearities
(plasticity, cracking)
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Introduction

Introduction

Non linear behaviour of structures

@ Concerns the major part of it's

behaviour

@ Can be approximated by linear

computation with asumptions

= Security coefficients.

@ Non linearities due to

e Dynamic effects
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Reminders on elasticity of materials
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Stress

© Reminders on elasticity of materials
@ Stress
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Reminders on elasticity of materials
0O®00000000000

Stress

Stress

@ Stresses represent the cohesive forces in a solid that allow the
material to withstand the loading.

@ Stresses are the result of interaction between small parts of
the material (crystals, molecules... etc... etc...).

@ The equivalent of stress for a perfect fluid is pressure.
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Reminders on elasticity of materials
0O®0000000000

Stress

Definition of the stress vector :

balance equations

@ For a solid () loaded by a set of
mechanical actions and in
balance with respect to a
reference system, the balance
equations are verified for any
arbitrary part of Q).
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Reminders on elasticity of materials
0O®0000000000

Stress

Definition of the stress vector :

balance equations

o If we cut Q) by a plane of normal
N passing through point P, the
two parts )" located on the
normal side and (O~ located on

the opposite side, are in balance. =S~
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Reminders on elasticity of materials
0O®0000000000

Stress

Definition of the stress vector :

()~ is in balance under the effect :

@ External forces exerted on it.

@ From thg stress vector
T (P, ) exerted at any point
P of the cut-off plane.




Reminders on elasticity of materials
0O®0000000000

Stress

Definition of the stress vector :

definition

—
The stress vector T (P, 77 ) is the
surface density of the forces exerted
by QO on Q). It is the physical
variable associated with the stress.




Stress

Reminders on elasticity of materials
000®000000000

Remarks

© The stress vector is expressed in Pascals.
1Pa = 1N/m?, 1MPa = 10°Pa, 1GPa = 10°Pa
There are also more exotic units of use strongly discouraged :
1T/ m? ~ 10kP3, 1kg/cm2 ~ 100kPa, 1bar =
100kPa, 1PSI ~ 6,9MPa

@ If at a given point P T (P, n3) # T (P, n{).
© At two points P and @ of the same normal cut-off plane
T(P,TW)#T(Q )

@ The resulting actions from Q" on )~ for a normal cut-off
plane IT of normal s :

ﬂ
FQ+/Q— = ffl_l P n) ds
—_— ==~
MAyﬂ#»/Q* = ffnzﬁ/\ T(P, n) ds A IS(A BTP



Reminders on elasticity of materials
0000®00000000

Stress

Normal and tangential stresses :

The stress vector is composed of a
normal stress ¢, and a tangential °0
ﬁ
stress T,.
o, =T(P, 7)o
To=T(P, 7)o —c,1
@ The normal stress 0, is a
number.
. — .
@ The tangential stress 7, is a
vector.
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Reminders on elasticity of materials
00000@0000000

Stress

Projections on the reference vectors :

For a given reference system
(71> X_2> Q) of orthonormal vectors

—_—

@ 011 = T(P,;f).;f
—_—

@ 012 = T(P,?f)o?%

—
° 013 = 7_(":’,7{)'73>

Projections of T(P, x3 )
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Reminders on elasticity of materials
000000000000

Stress

Cauchy stress tensor

On the pressure or tension in a solid body (1827)

Any part of a system in equilibrium is assumed to be in equilibrium
itself, under the effect of the constrained vector applied to its
boundary and a possible body force
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Reminders on elasticity of materials
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Stress

Reciprocity of stress

@ For a penny-shape of area dA,
thickness de and normal A.
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Reminders on elasticity of materials
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Stress

Reciprocity of stress

@ 0%e — 0 = the participation of stress
exerted on the slice tends to 0.
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Reminders on elasticity of materials
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Stress

Reciprocity of stress

T(P, ﬁiaA + T(P, —ﬁiaA + foAd%e =0

= =(\
ISA BTP



Reminders on elasticity of materials
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Stress

Reciprocity of stress

T(P,R)0A+ T(P, —ﬁSaA+ foAd%e =0
3%e — 0 = foAd?e — 0
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Reminders on elasticity of materials
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Stress

Reciprocity of stress

T(P,1)oA+ T(P, —338A+ foAd?e =0
9%e — 0 = f0Ad%e — 0

T(P,—m) = —T(P. ) |
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Reminders on elasticity of materials
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Stress

Linearity of the stress with respect to the normal vector :

@ balance equations for a pyramidal volume
around a given point P :
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Reminders on elasticity of materials
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Stress

Linearity of the stress with respect to the normal vector :

— —
@ T(P,n)0A+ T(P,—x1)0A; +
—_— —_— .
T(P, —Xg)aAz -+ T(P, —X3)aA3 =0

_NIEURS



Reminders on elasticity of materials
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Stress

Linearity of the stress with respect to the normal vector :

@ 7 = axi + Bxo + X3, we have :
aAl = DéaA, 8A2 = ,BE)A, 8A3 = 'yE)A

‘TP



Reminders on elasticity of materials
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Stress

Linearity of the stress with respect to the normal vector :

@ We then obtain :

QAT (P, 1) + adAT (P, —xi) +
— — =
BOAT (P, —x2) + yAT (P, —x3) =0

_NIEURS



Reminders on elasticity of materials
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Stress

Linearity of the stress with respect to the normal vector :

T(P,axi + B +7%) = aT(P,x1) + BT(P,x2) + 1T (P, x3) JWP




Reminders on elasticity of materials
000000000 e000

Stress

Sress tensor

For 0p, the function given at the point P which at a normal vector

T associates the stress vector T (P, 7) , we have demonstrated

that it is a linear form of the space R? which allows it to be
represented by a matrix.

T(P,7)=0p ()

Op can be written with respect to the basis (Yf X3, x_3>) :
L 011 012 013
Op: | 021 02 023

031 032 033 (x.38.%2)

= =(\
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Reminders on elasticity of materials
0000000000800

Stress

Symmetry of the stress tensor oj; = 0j;

Balance equations of a cubic elementary volume Q) cubic (or
square in 2D) of infinitesimal dimensions da. This element is
loaded by the stress vectors exerted on each face (or edge).

@ For the face of normal xi :
T(P,x1) = 011xi + 021%
@ For the face of normal x5 :
T(P,x2) = 012X1 + 0225

0215
30215

~—t
—011x X1

@ For the face of normal—x3 :

T(P,—x1) = —o11x1 — 021%
o For the face of normal—x : 2
T(P,—x) = —012X1 — 0225

TP

NIEURS



Stress

Reminders on elasticity of materials
0000000000800

Symmetry of the stress tensor gj; =

For the face of normal xi :
T(P,x1) = 011X + 021%

§

For the face of normal x5 : & owa
T(P,x2) = 012X1 + 0225

0215

da
<‘(

_~—t
—0nx 11X

For the face of normal—xj :

T(P, —Xl) = —0'11X1 — 0'21X2 'f; o125
For the face of normal—5 : 22
T(P,—x) = —012X1 — 0225

momentum equation around Px3

X1 A 021035 —|— P x> N\ 01p0axy — a)?i N —0p10ax> — %)?2 A

—0'1288X1 =0
22 ) P
S, — i(712 + @ <721 = if712 =0 P

SENIEURS




Reminders on elasticity of materials
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Stress

Symmetry of the stress tensor oj; = 0j;

the matrix 0p is diagonalisable

The eigenvalues of Tp are also called principal stresses noted o7,
02, 03.

01> 0p > 03
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Reminders on elasticity of materials
0000000000080

Stress

Symmetry of the stress tensor oj; = 0j;

the matrix 0p is diagonalisable

The eigenvalues of Tp are also called principal stresses noted o7,
02, 03.

01> 0p > 03
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Reminders on elasticity of materials
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Stress

Symmetry of the stress tensor oj; = 0j;

the matrix op is symetric

the matrix 0p is diagonalisable

The eigenvalues of Tp are also called principal stresses noted o7,
02, 03.

01> 0p > 03
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Reminders on elasticity of materials
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Stress

Balance equations :

— = - ~
o [[56 T(P,n)dS+ [[[fdV =0

05 1 0.2
Op : 1 07 0
02 0 03
=
ISA BTP
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Reminders on elasticity of materials
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Stress

Balance equations :

— = - R
o [[56 T(P,n)dS+ [[[fdV =0
o [hoTr 7 dS+ [[f,7dv =0

=
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Reminders on elasticity of materials
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Stress

Balance equations :

— - R
o [[56 T(P,n)dS+ [[[fdV =0
o [[,n0p MdS+ [[[fdV =0
o fho7pdS + [[[n7dV =0

S~
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Reminders on elasticity of materials
0000000000008

Stress

Balance equations :

— - R
o [[56 T(P,n)dS+ [[[fdV =0
o [[,n0p MdS+ [[[fdV =0
o fho7pdS + [[[n7dV =0

S~
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Reminders on elasticity of materials
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Stress

Balance equations :

Divergence theorem :

° [ mds + [[fy FdV =0 gféﬂ TpdS = ///Q divomdV

° [[a p 1 dS + M fdv =0
o ¢f_TrdS + ([, FdV =0 L
Hao Ma // dives + FdV =0, vQ
Q

= =(\
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Reminders on elasticity of materials
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Stress

Balance equations :

Divergence theorem :

o [y T(P.)dS + [[f,FaV = 0 ﬁgﬂwﬁz/ﬂ)mc/v
o [[,q0p MdS+ [[JnfdV =0

o dhopds + [l FdV =0 ///Q—>

divop + fdV =0, VQ

Which demonstrates :

ISA BTP



Reminders on elasticity of materials
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Elastic stress strain relationship

© Reminders on elasticity of materials

@ Elastic stress strain relationship
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Reminders on elasticity of materials
0®00

Elastic stress strain relationship

Uniaxial experiments

Displacement

(a) For ductile (b) For quasi-brittle
material material (concrete)

Strain Hardening Necking

Stress.

Ultimate Strength

™ fFracture

~N
ield Strength

(b)

00004 —0.0002 0.0000 0.0002 0 00006 0.0008 0.0010
Normal strain mm)

S~
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Reminders on elasticity of materials
feeY Yol

Elastic stress strain relationship

Elastic stress strain relationship

Most materials exhibits a range where the relationship between
stress and strain is reversible and linear.

1+v v E v
&j = —p 0 — g0y i 0j = 110 (SU + 1_21/8""5’7)

or
eij = Sijiow ; 05 = Ciji€nl

Where E is the Young's modulus or modulus of elasticity and v is

the Poisson’s ratio, Sy, the matrix of compliance, Cjjy its inverse,

the matrix of elasticity. S~
ISA BTP
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Reminders on elasticity of materials
oooe

Elastic stress strain relationship

Free energy

Energy of elasticity we

Is the quantity of energy stored into the material by deformation
and by unit of volume. w, = %(T;J-E,-j

Helmholtz free energy Y.

is the elastic energy by mass unit, ¥, = %
1
p¥e = ECijkIEijSkI

The Helmholtz free energy is a state potential in terms of
thermodynamics

opY
T ey ijkIE ]

TP

o NIEURS




Criteria of elasticity
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Experiments :

© Criteria of elasticity
@ Experiments :
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

@ Tension test on ductile material

multiaxial

ISA BTP
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

@ Compression test for concrete

multiaxial

ISA BTP
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

e Splitting test (not really
uniaxial)

multiaxial

= =(\
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

Load cell

@ Tension test on concrete

multiaxial

Displacement
sensors

b ISA BTP
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

v

multiaxial

@ Tension torsion on a monocristal

N = 3/4 de cycle

=5~
b ISA BTP
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

multiaxial

@ Bi-traction

z :(\
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

v

multiaxial

@ Triaxial test

ISA BTP
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Criteria of elasticity
oeo

Experiments :

Experiments

Uniaxial

multiaxial

= =(\
!SA BTP
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@ Bi-compression on concrete




Criteria of elasticity
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Experiments :

How results of experiments can be used in a general case ?

results of experiments
@ behaviour of a material in
a particular condition
@ mostly uniaxial

e tension strength f;
e compression strength f-

ISA BTP



Criteria of elasticity
ooe

Experiments :

How results of experiments can be used in a general case ?

design a structure for a given loading

@ The material must remain
elastic in most cases, or its
plasticity-damage must be
acceptable

results of experiments

@ behaviour of a material in
a particular condition

@ mostly uniaxial .
y @ Each point of the structure

e tension strength f; .
S owns a particular state of stress

e compression strength f-

@ The state of stress is often
multi-axial

ISA BTP



Criteria of elasticity
ooe

Experiments :

How results of experiments can be used in a general case ?

design a structure for a given loading

@ The material must remain
elastic in most cases, or its
plasticity-damage must be
acceptable

results of experiments

@ behaviour of a material in
a particular condition

@ mostly uniaxial .
y @ Each point of the structure

e tension strength f; .
S owns a particular state of stress

e compression strength f-

@ The state of stress is often
multi-axial

Problem 7?77
How to compare a tensor with a number?

ISA BTP




Criteria of elasticity
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Invariants of the stress tensor :

© Criteria of elasticity

@ Invariants of the stress tensor :

ISA BTP
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Criteria of elasticity
0®0000000000

Invariants of the stress tensor :

The stress tensor and its associated matrix

"Stress tensor" and "Stress matrix"

@ The stress tensor is the linear form
e 0p:n— T(P, ﬁ;

@ The associated matrix of op for a given reference (X1, X5, X3)
is [07]

@ The individual value of each ¢j; depends on the chosen
reference and isn't physical representative.

= =(\
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Criteria of elasticity
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Invariants of the stress tensor :

Invariants

Numbers
e h =
o =

b =
e 3=

calculated from matrix that independent of the reference

011 + 022 + 033 = Tr(0) = ok

% ((TrU)2 — Tr ((72))
011022 + 022033 + 011033 — 0122 - ‘7223 - ‘7123
Det(U,-j)

In term of principal stresses

o h =

o L=

0/3:

01+ 02+ 03
0102 + 0203 + 0103
010203

ISA BTP
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Criteria of elasticity
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Invariants of the stress tensor :

Stress deviator :

Experiment results
@ For a lot of materials, the elasticity domain is independent of
o _ Il
the hydrostatic pressure 77 = 3.
@ The stress deviator is obtained by subtracting the hydrostatic

pressure to the stress tensor.

Sij = 0;j — 76;j where §; = { é :IC : ;j is the Kronecker delta

S11 S12 Si3 o1 012 013 T 0 0
S21 S» S| = |0 02 03 |—|0 10
531 532 533 | 031 032 033 0 0 m
S11 S12 Si3 o1 —7mT 012 013
So1 S» S | = 021 02— T 023 =
Sy S32 S A
31 S3 33 031 032 033 =7 | |SABTP



Criteria of elasticity
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Invariants of the stress tensor :

Von-Mises equivalent stress (1913) :

invariants of the stress deviator tensor

The first, second and third invariants of the stress deviator tensor
are called Ji, b and J;.

e h=Tr(S)=011+00n+033—-31=0
o b= %Tr(52) (the sign convention is at the opposite of the

definition given for )
fo=3(5t+ 53 +53)

h=1t((1—0)+(@2—03) + (03— n)°)

Von Mises equivalent stress based on J,

@ must be homogeneous to a stress

@ must be to the stress value in tension-compression

Oeq = V 3J2

TP



Criteria of elasticity
00000e000000

Invariants of the stress tensor :

Von Mises Criterium of elasticity

The criterium of elasticity based on

this equivalent stress is given by the

equation :
Oeqg— 0, =0

Where 0y, is the yield stress in
uniaxial stress condition.

The Von Mises stress is also known
as the maximum energy of strain
distorsion.

Von Mises
Yield Surface oS

o
907 _mydrostatic
L Axis

Yield Curve

Tresca
Yield Surface

“~ n-plane
(Dewviatoric Plane)
O\ +0y+0y= 0

ISA BTP
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Criteria of elasticity
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Invariants of the stress tensor :

The Mohr Coulomb criterion

e Geomaterials (rocks, concrete) and most of quasi-brittle
materials behaviour depends on the hydrostatic stress (ie
different in tension and compression)

@ The Coulomb criterium (1773), further studied by Mohr is
based on the friction hypothesis

T=0,tan®+ C \

C : Cohesion
® : Friction angle

2 :(‘
ISABTP




Criteria of elasticity
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Invariants of the stress tensor :

The Mohr Coulomb criterion

In terms of principal stresses 01 > 0> > 03

@ 01 —03=(01+03)sin®+2Ccos®
@ The uniaxial tensile strength o; is given for o = 073,
Oy = 03 = 0:
o = 2Ccos®
t = T+sin®
@ The uniaxial compressive strength o is given for o, = 03,
01 = 02 = 0:
_ __2Ccos®
Uc = 1—sin®

=5~
ISA BTP
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Criteria of elasticity
000000008000

Invariants of the stress tensor :

The Drucker Prager criterion (1952) :

°
v =A+ Bh -
@ In terms of 0; and sigmac 8
o A= 2 Ui0c
V3 0c—0t
_ 1 ottoc A
° B=xov
@ equivalence with Mohr-Coulomb
Parameters
_ _6Ccosd
°o A= V/3(3—sin ®)
_ _ 2sin®
° B= V/3(3—sin @)

=S~
ISA BTP



Criteria of elasticity
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Invariants of the stress tensor :

The Drucker Prager criterion (1952) :

°
v =A+Bh
@ In terms of 0; and sigmac
_ 2 0t0¢
° A= o
_ 1 ot+oc¢
o B - %O’i*ﬂc
@ equivalence with Mohr-Coulomb
Parameters
_ _6Ccos®
°o A= V/3(3—sin ®)
_ _ 2sin®
° B= V/3(3—sin @)



Criteria of elasticity
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Invariants of the stress tensor :

The Mazars' criterion (1984).

The Mazars' criterion is often use for concrete like materials
modelled with damage. The idea of Mazars is that the non linearity
of the material is generated by extension strains (i.e. positive
strains).

= \/ (e1) + (€2) + <53)2
where €1, €2 and €3 are the principal strains and () designs the
x if x>0
Macauley brackets (x) = { 0 if x<0 - The threshold
function is therefore writen as following

§— k(D) =0

Where k(D) is the yield strain depending of damage D. The = S~
inititial value is called €49 correspond to the limit of elasticity inNsA BTP
positive strain.



Criteria of elasticity
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Invariants of the stress tensor :

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

- 011 00 % 0 0
[ 0 0 0 |,thene:| O —F 0
0 0O 0 0 7];:5711

0'11=0't>0:€11=lr—é>
0;822<0;833<0

& 7,
ngt:fdo

Normalstress(MPa)

0 = Eeyo 10l a6 ao6sssdorasher 5o asies 5o

(b) Normal strain (mm/mm)

= =(\
ISA BTP
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Criteria of elasticity
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Invariants of the stress tensor :

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

om0 0 w0 0
T 0 0 O |,thene: 0 —Zu 0
0 00 0 0 =m

0'11=O't>0$€11=[7—é> E
0;e$0 <0;e33<0 3
. o i
€= TF = &do
O't = Esdo —0.0004 —0.0002 30»00[ 0‘1000? (0‘0007 0.)0006 0.0008 0.0010
= =(\

ISA BTP
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Criteria of elasticity
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Invariants of the stress tensor :

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

i1 00 %—1 0 0
T 0 0 O |,thene: 0 —Fu 0
0 0O 0 0 %011
. . - -3‘.5 ~3‘.0 >2‘A5 -ZI‘O -1‘.5 -1‘.0 -q.5 o
R 0.
rm=0.<0=epn=%> 10 *
0;e0 <0;e33<0 2o
5 o
&€= —\/EVFC = €40 30,
4. -40.
E€d0
O'C = — 4-50.
\/51/ Gy
S~
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Criteria of elasticity
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Invariants of the stress tensor :

The Mazars criterion (1984).

Limits of elasticity In the case of an uniaxial loading :

| o 00 [ 0 0
T 0 0 O |,thene: 0 —Fu 0
0 00 0 0 =t

in compression

011 =0.<0=¢e3 =% >
0;822<0;833<0
g:_\/iyU_EC:ng

Eeqo

- =
C \/51/
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Criteria of elasticity
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Invariants of the stress tensor :

The Mazars criterion (1984).

z :(\
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Typical 1D non linear behaviour of materials
[ Jelelelo)

Plasticity

@ Typical 1D non linear behaviour of materials
o Plasticity
= -(‘
ISA BTP
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Typical 1D non linear behaviour of materials
0®000

Plasticity

plasticity

Hardening

Plasticity is directly related to
local slips / dislocations [1]

e=¢e+¢P

elastic slope remains constant

hardening or softening

oc=Ee® =E(e—¢P) ‘

-
_y

. . 7 4
Plastic strains ISA BTP
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Typical 1D non linear behaviour of materials
00®00

Plasticity

Isotropic Hardening

x|
Oy -
3
/—g)’ o
Isotropic hardening Sr—

ISA BTP
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Plasticity

Isotropic Hardening

S D:I
0y
3
jgy oK

Isotropic hardening

Typical 1D non linear behaviour of materials
00®00

ks,
R

52 51

Isotropic yield function

= =(\
ISA BTP



Plasticity

Isotropic Hardening

yield function
@ The limit of elasticity is
increased of the hardening value
R
@ 0eq—0,—R=0
@ R is the hardening parameter
(scalar)

Typical 1D non linear behaviour of materials
00®00

Isotropic yield function

=S~
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Typical 1D non linear behaviour of materials
000®0

Plasticity

kinematic Hardening

P
Oy
x| ¢
Z -x
IKinematic hardening Sr—

ISA BTP
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Plasticity

kinematic Hardening

A

IKinematic hardening

Typical 1D non linear behaviour of materials
000®0

A53U
’ X

52 51

Kinematic yield function

= =(\
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Plasticity

kinematic Hardening

yield function

@ The “center of elasticity” is
moved by the hardening value X

0 0q(0—X)—0,=0
@ X is the hardening parameter
(tensor)

Typical 1D non linear behaviour of materials
000®0

ks, .
X

52 51

Kinematic yield function

=
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Typical 1D non linear behaviour of materials
ooooe
Plasticity

Combined hardening

yield function

@ The general cases combines
Kinematic and Isotropic
hardenings

@ 0q(0—X)—0,—R=0 S,

Kinematic yield function

=
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Typical 1D non linear behaviour of materials
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Damage :

@ Typical 1D non linear behaviour of materials

@ Damage : S 4
ISA BTP
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Typical 1D non linear behaviour of materials
0®00

Damage :

Damage

The damage is linked to debonding
of material and microcracking that
accours at the mesoscopic level [1]

ISA BTP
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Typical 1D non linear behaviour of materials
coeo

Damage :

Damage

@ Let 4S5 be the intersection area
of a given plane of normal 7
with a Representative
Elementary Volume (RVE).

@ Let 0Sp, be the effective area of
micro-cracks and micro-cavities
within the intersection plane at

the point M
@ The value of damage is then
defined by projection of defects on a plane after
Kachanov
— 55Dn
D M, n) — =
( ) 55; S

ISA BTP
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Typical 1D non linear behaviour of materials
ocooe

Damage :

Isotropic Damage

Classical hypothesis

@ Damage is isotropic

@ The damage variable is a real

Normalstress(MPa)

D = 0 — undamaged material
D =1 — fully broken material © T ol s )
oc=E(1—-D)e® (1D)

Stress-strain relation exhibiting damage

= =(\
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Hardening and Softening

© Introduction to the strain localization problem : ISA BTP
@ Hardening and Softening



Introduction
oe

Hardening and Softening

Hardening and Softening

Non linear behavior during a 1D tension test
@ Stress is increasing = hardening

@ Stress is decreasing = softening.

i

&' &' Y

(a) Elastic (b) Hardening (c) Softening

-
=

Problem

2 solutions for a given load in case of softening
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1D tension test

z S
© Introduction to the strain localization problem : ISA BTP
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1D tension test

tension test of a simple 1D bar AB

o Initial length L
@ Section Area A

@ Test performed by increasing
the elongation JL

ISA BTP
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1D tension test

tension test of a simple 1D bar AB

o Initial length L v
@ Section Area A

@ Test performed by increasing
the elongation JL

v

Material behaviour

o E is the modulous of elasticity

@ ¢g is the threshold in tension

@ ¢, is the fracture strain

A\

ISA BTP
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1D tension test

tension test of a simple 1D bar AB

Stress strain relationship
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1D tension test

tension test of a simple 1D bar AB

Stress strain relationship

{£<€0 o= Ee 7

e>¢g 0= sffgr (e—¢r)

Balance equations

| \

o __ _ F
05_0:>0-_.,_4

@ The stress is homogeneous
along the bar

)

ISA BTP



1D tension test

tension test of a simple 1D bar AB

Stress strain relationship

e<eyg o=Ee
Ee
e>e 0= 2 (e—¢g)

Balance equations

| \

o __ _ F
05_0:>0-_.,_4

@ The stress is homogeneous
along the bar

@ 2 solutions : or non

linear path

A\

Introduction
0®000

=
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e’
e
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1D tension test

tension test of a simple 1D bar AB

Stress strain relationship

{£<€0 o= Ee

e>e 0= (e—¢) LN

=m

Balance equations

| \

o __ _ F
° 5 = 0=0= a
@ The stress is homogeneous €' .

along the bar .

& At least one point must follow the

@ 2 solutions : or non non linear path

linear path .

v = -(\

ISA BTP
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1D tension test

Homogeneous solution

[Hypothesis
AEgg

Hypothesis

e All points are following the non | |
linear path

@ Plastic strains or damage are
identical along the bar

@ Total strains are identical along
the bar

@ The final length of the bar is Le,

oL

Legl Le,

= =(\
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1D tension test

Etherogeneous solution

@ a part of the specimen is
following the non linear path
while the other is following the S R N —
linear path. |

=lm

]
€0 & e
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1D tension test

Etherogeneous solution

@ a part of the specimen is
following the non linear path
while the other is following the I Y AR _
linear path. |

=lm

]
€0 &, €
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1D tension test

Etherogeneous solution

Hypothesis
@ The length of the non linear
part is % .
a !
@ The lengh of the linear part is B A
eneN,n>1.
° e
(] KSLn/ —. ..

= =(\
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1D tension test

Etherogeneous solution

Hypothesis

@ The length of the non linear —
part is % \
@ The lengh of the linear part is
eneN,n>1.
Elongation
= =(\

ISA BTP
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1D tension test

Etherogeneous solution

Hypothesis

@ The length of the non linear —
part is % \
@ The lengh of the linear part is
eneN,n>1.
Elongation
[ % L n— %0 0.0001 0.0002 suf 0003 0.0004 0.0005
_& L
C (SL”’ T < EA e,—so) n

EAe, — ¢ ISA BTP

£ D'INGENIEURS

5L:F[_n_1+<€r_l: €0 )L Sr—
n n
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1D tension test

Etherogeneous solution

. 7=
e F=0 \ :
o 5L, =¢,t e
@ strain of elastic elements = 0. " e
@ strain of non linear elements &,
o il <gyg = 0L, <Idle=
Leg = instability ) T ew wem omm oww o
£~

ISA BTP
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1D tension test

Etherogeneous solution

35x10°

Dissipated energy W

(5’.; 25x10°
o Wr :/ FdoL
0

2x10°

FIA

@ Wk is the area under the curve
_ EepA, L e
() Wf = 5 £rﬁ
o lim Wr=0
n——+o00 i 0.0001 0.0002 0.0003 0.0004 0.0005

=5~
ISA BTP
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1D tension test

3 J. Lemaitre.
A course on damage mechanics.
Springer-Verlag, Berlin; New York, 1992.
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