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Part I

Reminders on elasticity of materials
1 stress :
Stresses represent the cohesive forces in a solid that allow the material to withstand the loading.

Stresses are the result of interaction between small parts of the material (crystals, molecules... etc... etc...).
The equivalent of stress for a perfect fluid is pressure.

1.1 Definition of the stress vector :
For a solid Ω loaded by a set of mechanical actions and in balance with respect to a reference system, the balance
equations are verified for an arbitrary part of Ω.
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If we cut Ω by a plane of normal −→n passing through point P, the two parts Ω+ located on the normal side and Ω−

located on the opposite side, are in balance.
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T(P,n)

Ω− is in balance under the effect:

• External forces exerted on it.

• From the stress vector
−−−−−−→
T (P,−→n ) exerted at any point P of the cut-off plane.

The stress vector
−−−−−−→
T (P,−→n ) is the surface density of the forces exerted by Ω+ on Ω−. It is the physical variable associated

with the stress.

Remarks:

1. The stress vector is homogeneous with an effort per unit area or pressure, it is expressed in Pascals.
1Pa = 1N/m2, 1MPa = 106Pa, 1kPa = 103Pa, 1GPa = 109Pa
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There are also more exotic units:
1T/m2 ' 10kPa, 1kg/cm2 ' 100kPa, 1bar = 100kPa, 1PSI ' 6, 9MPa
The use of these units is strongly discouraged.

2. If at a point P we perform two normal cut-off planes −→n1 and −→n2, we obtain two constrained vectors T (P,−→n1) and
which are T (P,−→n2) a priori different.

3. At two points P and Q of the same normal cut-off plane −→n we obtain two stress vectors T (P,−→n ) and T (Q,−→n )
which are different.

4. The torsor of actions resulting from Ω+’s actions on Ω− for a normal cut-off plane Π of normal −→n is :
−−−−−→
FΩ+/Ω− =

´ ´
Π

−−−−−→
T (P,

−→
n)ds

−−−−−−−→
MA,Ω+/Ω− =

´ ´
Π

−→
AP ∧

−−−−−→
T (P,

−→
n)ds


A

1.2 Projections of the stress vector :
1.2.1 Norman and tangential stresses:

The stress vector is composed of a normal stress σn and a tangential stress −→τn.
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T(P,n)

n

σ n n

τ n

σn =
−−−−−→
T (P,−→n ) • −→n −→τn =

−−−−−→
T (P,−→n ) • −→n − σn−→n

• The normal stress σn is a number.

• The tangential stress −→τn is a vector.

1.2.2 Projections on the reference vectors:

For a given reference system (−→x1,
−→x2,
−→x3) of orthonormal vectors, the projections of the stress vector on the basis vector

are called as following:

σij =
−−−−−→
T (P,−→xi) • −→xj

1.3 Cauchy stress tensor 1:
Any part of a system in equilibrium is assumed to be in equilibrium itself, under the effect of the constrained vector
applied to its boundary and a possible body force ~f

1.3.1 Reciprocity of stress

For an infinitesimal part around a given point for which the thickness is small with respect to other dimensions, we
can take a penny-shape of area ∂A, thickness ∂²e and normal ~n (figure 2).

If the thickness ∂²e tends towards 0, the participation of stress exerted on the slice is neglectible and the balance
equations reads:−−−−→

T (P, ~n)∂A+
−−−−−−→
T (P,− ~n)∂A+ ~f∂A∂e = ~0 , since ∂e� 1 the body forces can be neglected and we can write :

1Cauchy, De la pression ou tension dans un corps solide, [On the pressure or tension in a solid body], Exercices de Mathématiques, vol.
2, p. 42 (1827)
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~x3

σ11
~x1

σ13

−−−−−→
T (P, ~x1)

σ12

~x2

Figure 1: Projections of
−−−−−→
T (P, ~x1)

∂2e

∂A

~n

−−→
T (~n)

−~n

−−−−→
T (−~n)

Figure 2: reciprocity of the stress vector

−−−−−−→
T (P,− ~n) = −

−−−−→
T (P, ~n)

1.3.2 Linearity of the stress with respect to the normal vector :

For a pyramidal volume element of infinitesimal dimensions around a given point P (figure 3).
The volume element is in balance−−−−→
T (P, ~n)∂A+

−−−−−−−→
T (P,− ~x1)∂A1 +

−−−−−−−→
T (P,− ~x2)∂A2 +

−−−−−−−→
T (P,− ~x3)∂A3

If the normal vector is ~n = α ~x1 + β ~x2 + γ ~x3, we have : ∂A1 = α∂A, ∂A2 = β∂A, ∂A3 = γ∂A

We then obtain: ∂A
−−−−−−−−−−−−−−−−−→
T (P, α ~x1 + β ~x2 + γ ~x3) + α∂A

−−−−−−−→
T (P,− ~x1) + β∂A

−−−−−−−→
T (P,− ~x2) + γ∂A

−−−−−−−→
T (P,− ~x3) = 0

which demonstrates that the stress vector expression is linear with respect to the normal vector :

−−−−−−−−−−−−−−→
T (P, α~x+ β~y + γ~z) = α

−−−−→
T (P, ~x) + β

−−−−→
T (P, ~y) + γ

−−−−→
T (P, ~z)

1.3.3 Sress tensor

For σP , the function given at the point P which at a normal vector −→n associates the stress vector
−−−−−−→
T (P,−→n ) , we have

demonstrated that it is a linear form of the space R3 which allows it to be represented by a matrix.−−−−−−→
T (P,−→n ) = σP (−→n )
σP can be written with respect to the basis (−→x1,

−→x2,
−→x3):

σP :

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


(−→x1,
−→x2,
−→x3)
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∂A2

∂A1

−−→
T (~n)

∂A

~x3

~x2

~x1

−−−−→
T (− ~x3)

−−−−→
T (− ~x1)

−−−−→
T (− ~x2)

∂A3

Figure 3: Evidence of the stress tensor
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Figure 4: Symmetry of the stress tensor

1.3.4 Symmetry of the stress tensor

We can show that the stress tensor σP is symmetric (σij = σji ),let us take as an example a cubic elementary volume
Ω cubic (or square in 2D) of infinitesimal dimensions ∂a. This element is loaded by the stress vectors exerted on each
face (or edge).

• For the face of normal ~x1 : T (P, ~x1) = σ11 ~x1 + σ12 ~x2

• For the face of normal ~x2 : T (P, x2) = σ21 ~x1 + σ22 ~x2

• For the face of normal− ~x1 : T (P,− ~x1) = −σ11 ~x1 − σ12 ~x2

• For the face of normal− ~x2 : T (P,− ~x2) = −σ21 ~x1 − σ22 ~x2

The momentum balance equation reads
∂a
2 ~x1 ∧ σ21∂a ~x2 + ∂a

2 ~x2 ∧ σ12∂a ~x1 − ∂a
2 ~x1 ∧ −σ21∂a ~x2 − ∂a

2 ~x2 ∧ −σ12∂a ~x1 = 0
then :
∂a2

2 σ21 − ∂a2

2 σ12 + ∂a2

2 σ21 − ∂a2

2 σ12 = 0
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(a) σP :

 1 0 0
0 0 0
0 0 0

 (b) σP :

 0 1 0
1 0 0
0 0 0

 (c) σP :

 0.5 1 0.2
1 0.7 0
0.2 0 0.3


Figure 5: stress vector on an inner surface

σ12 = σ21

Which shows that the matrix σP is symetric, it is as a consequence diagonalizable. The eigenvalues of σP are also
called principal stresses noted σ1, σ2, σ3.

1.4 Balance equations:
If we take an arbritrary elementary volume Ω a the neibourhood of the point P , one can say that Ω is in equilibrium
under the action of the stresses vectors exerted on its boundary surface further called ∂Ω and under the action of
possible body force ~f . An example of drawing of the vector stress on a boundary of a cube is ploted on the figure 5.
The sum of applied stresses and body forces must be zero in order to satisfy the balance equations.

We obtain as a consequence
˜
∂Ω

−−−−→
T (P, ~n)dS+

˝
Ω
~fdV = ~0 that can also be written

˜
∂Ω
σP
−→n dS+

˝
Ω
~fdV = ~0 or

‹
∂Ω

σP
−→
dS +

˚
Ω

~fdV = ~0

The divergence theorem also known as Green-Ostrogradski theorem2 states that the outward flux of a tensor field
through a closed surface is equal to the volume integral of the divergence over the region inside the surface :

‹
∂Ω

σP
−→
dS =

˚
Ω

−−−→
divσP dV

We have then
˚

Ω

−−−→
divσP + ~fdV = ~0, ∀Ω

Which demonstrates :
−−−→
divσP + ~f = ~0

2 Elastic stress strain relationship
Most materials exhibits a range where the relationship between stress ans strain is reversible, this domain is called
elasticity domain. Within this elasticity domain, the behaviour of materials can be supposed in most case as linear
(see Figure 7).

In the case of an isotropic material :
2Ostrogradski, «Proof of a theorem in Integral Calculus». paper presented at the “académie des sciences de Paris” on février 13, 1826
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(a) For ductile material
[2]

(b) For quasi-brittle material (concrete) [9]

Figure 6: Tensile tests

εij =
1 + ν

E
σij −

ν

E
σkkδij ; σij =

E

1 + ν

(
εij +

ν

1− 2ν
εkkδij

)
or

εij = Sijklσkl ; σij = Cijklεkl

Where E is the Young’s modulus or modulus of elasticity and ν is the Poisson’s ratio, Sijkl, the matrix of compliance,
Cijkl its inverse, the matrix of elasticity.

2.1 Free energy
We can define on this basis the energy of elasticity which is the quantity of energy stored into the material by
deformation and by unit of volume.

we = 1
2σijεij

The Helmholtz free energy Ψe is the elastic energy by mass unit, it is expressed in terms of strain variable (The
equivalent Gibb’s energy expressed in terms of stress is less used)

ρψe =
1

2
Cijklεijεkl

The Helmholtz free energy is a state potential in terms of thermodynamics, the state variable is the strain εij and
the stress σij is the associated variable is obtained by derivation of the potential.

σij =
∂ρΨ

∂εij

Part II

Criteria of elasticity
3 Uniaxial experiments :
Materials are often caracterized from uniaxial experiments: i.e.

σ :

 σ11 0 0
0 0 0
0 0 0


When used in a real structure, material are often loaded under multiaxial conditions and the stress (and the strain)

are caracterized by full tensor, the idea of criteria of elasticity is to calculate a number based on the state of stress (or
strain) which characterizes an equivalent state of the material if it would be loaded under uni-axial condition. In order
to develop such kind of criteria, it is usefull to perform multi-axial experiments such as tension-torsion test, biaxial or
triaxial tests.
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(a) For ductile material (b) For quasi-brittle material (concrete)[9]

Figure 7: Behaviour in tension

4 Invariants of the stress tensor :
The stress tensor components σij with respect to a given basis are dependant on the basis and canoot be taken as
physical variables. Nevertheless the tensor itself which is a linear form isn’t dependant on the basis used to project the
matrix.

Some numbers calculated from the matrix components are independant on the basis, they can be taken as physical
parameters. Usefull examples are :

• I1 = σ11 + σ22 + σ33 = Tr(σ) = σkk

• I2 = 1
2

(
(Trσ)

2 − Tr
(
σ2
))

I2 = σ11σ22 + σ22σ33 + σ11σ33 − σ2
12 − σ2

23 − σ2
13

• I3 = Det(σij)

The invariants can be written in terms of principal stresses :

• I1 = σ1 + σ2 + σ3

• I2 = σ1σ2 + σ2σ3 + σ1σ3

• I3 = σ1σ2σ3

4.1 Stress deviator :
It is observed that for a lot of materials, the elasticity domain is independent of the hydrostatic pressure π = I1

3 . We
can build the so called stress deviator substracting the hydrostatic pressure to the stress tensor.

Sij = σij − πδij where δij =

{
1 if i = j
0 if i 6= j

is the Kronecker delta S11 S12 S13

S21 S22 S23

S31 S32 S33

 =

 σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

−
 π 0 0

0 π 0
0 0 π


 S11 S12 S13

S21 S22 S23

S31 S32 S33

 =

 σ11 − π σ12 σ13

σ21 σ22 − π σ23

σ31 σ32 σ33 − π


4.2 Invariants of the stress deviator tensor :
The first, second and third invariants of the stress deviator tensor are called J1, J2 and J3.

• J1 = Tr(S) = σ11 + σ22 + σ33 − 3π = 0

• J2 = 1
2Tr(S

2) (the sign convention is at the opposite of the definition given for I2)
J2 = 1

2 (S2
1 + S2

2 + S2
3)

J2 = 1
6

(
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
)
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(a) Tension-torsion of a monochristal[5]

(b) Bi-traction[1]

(c) 3D tension-compression[6]

(d) Biaxial test on concrete

Figure 8: Multiaxial experiments
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Figure 9: Von Mises criterium (Picture courtesy of Rswarbrick)

4.3 Von-Mises equivalent stress [10]:
The idea of Von Mises is to create an equivalent stress σeq based on the second invariant of the stress deviator. In
order to find the applied stress in the uniaxial case, the expression of the equivalent stress is :

σeq =

√
3

2
J2

The criterium of elasticity based on this equivalent stress is given by the equation :

σeq − σy = 0

Where σy is the yield stress in uniaxial stress condition.
The Von Mises stress is also known as the maximum energy of strain distosion. The Von Mises criterium is presented

in the space of principal stresses with respect to the Tresca criterium which is the maximum shear stress figure 9.
The

4.4 Criteria that accounts for the hydrostatic stress
Geomaterials (rocks, concrete) and most of quasi-brittle materials behaviour depends on the hysdrostatic stress the
well known criteria are :

4.4.1 The Mohr Coulomb criteria :

The Coulomb criteriuù [3], further sudied by Mohr is based on the friction hypothesis. For a material of a defined
cohesion C and a frition angle Φ, the limit state is given by the condition τy = σtanΦ + C where τy is the shear
strength and σ is the normal stress.

This condition drives to the following equation :

σ1 − σ3 + (σ1 + σ3) sin Φ− 2C cos Φ = 0

Where σ1 ≥ σ2 ≥ σ3

The drawing of the Mohr-Coulomb criterium in the principal stresses space is given in the figure 10:
The uniaxial tensile strength σt is given for σt = σ1 , σ2 = σ3 = 0 : σt = 2C cos Φ

1+sin Φ

The uniaxial compressive strength σc is given for σc = σ3 , σ1 = σ2 = 0 : σc = − 2C cos Φ
1−sin Φ

9



Figure 10: Mohr-Coulomb criterium

Figure 11: Drucker-Prager criterium

4.4.2 The Drucker Prager criterium [4] : √
J2 = A+BI1

It can be expressed in term of the principal stresses :

Where A and B can be obtained from the limit of elasticity in tension
√

1
6

(
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2
)

=

A+B (σ1 + σ2 + σ3)

In an uniaxial case we obtain
√

1
3σ

2
1 = A+Bσ1

In tension, σt > 0 =⇒ σt

(√
1
3 −B

)
= A

In compression, σc < 0 =⇒ σc

(
−
√

1
3 −B

)
= A

So that :A = 2√
3
σtσc
σc−σt and B = 1√

3
σt+σc
σt−σc

We can also express the A and B parameters in terms of the cohesion C and the friction angle Φ if we assume that
the Drucker–Prager yield surface circumscribes the Mohr–Coulomb yield surface :

A = 6C cos Φ√
3(3−sin Φ)

and B = 2 sin Φ√
3(3−sin Φ)

The drawing of Drucker Prager criterium in the principal stresses space is given in figure 11.

4.4.3 The Mazars criterium [8].

The Mazars criterium is often use for concrete like materials modelled with damage, like the previous criteria are used
for plasticity models. The idea of mazars is that the non linearity of the material is generated by extension strains (i.e.
postive strains).

ε̃ =

√
〈ε1〉

2

+ 〈ε2〉
2

+ 〈ε3〉
2
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Figure 12: Mazars criterium

where ε1, ε2 and ε3 are the principal strains and 〈〉 designs the Macauley brackets 〈x〉 =

{
x if x > 0
0 if x ≤ 0

. The

threshold function is therefore writeen as following

ε̃− k(D) = 0

Where k(D) is the yield strain depending of damage D. The inititial value is called εd0 correspond to the limit of
elasticity in positive strain.

The mazars criterium can be explicitely written in terms of strains and is widely used for damage models.

In the case of an uiaxial loading, σ :

 σ11 0 0
0 0 0
0 0 0

, then ε :

 σ11

E 0 0
0 −νσ11

E 0
0 0 −νσ11

E


The limit of elasticity in tension is given for a positive value of σ11 = σt, in that case ε11 = σt

E > 0 and ε22 < 0,
ε33 < 0 this drives to ε̃ = σt

E = εd0

σt = Eεd0

In compression, the limit of elasticity is reached for σ11 = σc < 0, in that case ε11 = σc
E < 0 and ε22 = ε33 = −νσc

E >

0, this drives to ε̃ = −
√

2ν σcE = εd0

σc = −Eεd0√
2ν

The drawing of the mazars criterium in the principal stresses space is given figure 12

5 Typical 1D non linear behaviour of materials

5.1 Plasticity
Plasticity is directly related to slips that can occur in the material by dislocation of grains, rearrangement of moleculs,
slips along surfaces of decohesion [7]. The plasticity is characterized by a non linear behaviour linked to irreversible
strains so called plastic strains. The total strain ε is splitted into elastic strains εe and plastic strains εp (Figure 13).
The slope of the curve in the descending branch is identical to that of the ascending branch. The modulus of elasticity
isn’t affected by the “pure” plasticity. The stress intensity changing during the increasing of plastic strains is called
strain hardening (softening in case of decreasing of stress).
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Figure 13: Plastic strains

σy

R

ε

σ

σy +R

(a) Isotropic hardening

σy −X

ε

σ

σy

X

(b) Kinematic hardening

Figure 14: Plastic hardening

σ = Eεe = E (ε− εp)

The hardening can be :

• Isotropic (Figure 14a). In this case the limit of elasticity is increased of the hardening value R and the elasticity
criterium is σeq − σy −R = 0

• Kinematic (Figure 14b). The “center of elasticity” is moved to the hardening value X and the elasticity criterium
is (σeq −X)− σy = 0

• A general case combines the two modes of hardening :

(σeq −X)− σy −R = 0

5.2 Damage :
The damage is linked to debonding of material and microcracking that accours at the mesoscopic level [7]. Lemaitre
used an apple to represent the action of damage.
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100um

(a) Microcracking into concrete

δ
SDnn

δ
S

(b) projection of defects on a plane

Figure 15: Meso-definition of damage after Lemaitre

E(1-D)

E

Figure 16: Stress-strain relation exhibiting damage after[9]

• Let δS be the intersection area of a given plane of normal ~n with a Representative Elementary Volume (RVE).

• Let δSDn be the effective area of micro-cracks and micro-cavities within the intersection plane at the point M

• The value of damage is then defined by

D(M, ~n) =
δSDn
δS

The damage D is by definition bounded between 0 and 1 : 0 < D < 1

• D = 0 −→ undamaged material

• D = 1 −→ fully broken material

The damage affects the modulus of elasticity (Figure 16)

σ = E (1−D) εe
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Figure 17: Simple tension test
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(a) Linear elastic

F
A

ε

σ

ε0

(b) Strain hardening

F
A

ε

σ

ε0

(c) Strain softening

Figure 18: Solutions depending on the nature of the material

6 Introduction to the strain localization problem:

6.1 1D tension test
When the material is exhibiting non linear behavior during a 1D tension test,

• if the stress is increasing with the strain, there is stress hardening

• if the stress is decreasing while the strain is increasing, there is tress softening.

Lets take the example of tension test of a simple 1D bar AB of section A illustrated at figure17a. The test is performed
by increasing progressively the elongation δL of the specimen.

6.2 Solution of the problem
The balance equation drives to ∂σ

∂x = 0⇒ σ = F
A , that means that the stress is homogeneous over the bar.

The stress strain relationship (Figure 17b) can be written

{
ε < ε0 σ = Eε

ε > ε0 σ = Eε0
ε0−εr (ε− εr)

, the material can be either

plastic or damageable.
In the case of linear elastic material, the solution for a given value of the load is unique (Figure 18a), as in the case

of strain hardening (Figure 18b). For a softening material each material point has 2 solutions for a given stress (Figure
18c) the material can either stay elastic and folow the green path, or follow the non linear (red) path.

6.3 Homogeneous case
The simpler solution is to consider that the material stays homogeneous, i.e. the non linearities (plastic strains or
damage) are the same a each point of the specimen. The load displacement behavior on the specimen is drawn in
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Figure 19: Load displacement solution, homogeneous case
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Figure 20: Load displacement solution, etherogeneaous cases

figure 19

6.4 Heterogeneous case
One can imagine that a part of the specimen is following the non linear (red) path while the other is following the
linear (green) path. The balance equation is still verified as long as the stress in both parts are identical.

At a given stress σ = F
A the strains are :

• ε = σ
E for the elastic part

• ε = εr − σ
E

ε0
εr−ε0 for the non linear part

If the lengh of the non linear part is L
n , with n ∈ N, n > 1 , the lengh of the linear part is Ln−1

n , the elongation is :

• δLe = F
EAL

n−1
n for the elastic part

• δLnl =
(
εr − F

EA
ε0

εr−ε0

)
L
n for the non linear part

The overall elongation becomes δL = F
EAL

n−1
n +

(
εr − F

EA
ε0

εr−ε0

)
L
n and the the load displacement behavior is plotted

figure 20for different values of n.
The result depends on the value of n, that means that the problem is hill posed. The energy disipated (integral of

the load displacement relation) is decreasing and tends to zero with the size of the non linear element.
One solution consits of giving a characteristic length as the material paremeter which is the length of the non linear

area. An other solution consits of using a softening parameter (here εr) which depends on the size of the element in
order to disipate a constant value of energy.
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