
Visualizing 2D Flows with Animated Arrow Plots

Bruno Jobard1, Nicolas Ray2 and Dmitry Sokolov3

1 LIUPPA laboratory, University of Pau, France, bruno.jobard@univ-pau.fr
2 ALICE Team, INRIA Nancy Grand-Est, France, nicolas.ray@inria.fr

3 University of Lorraine, France, dmitry.sokolov@loria.fr

Figure 1: Ocean currents visualized with a set of dynamic arrows. (Left) The domain is filled with arrows aligned

with the flow. The length is proportional to the velocity magnitude. The arrow density is controlled by a custom map

to better capture local turbulences. (Right) Close-up showing the arrow trajectories and the morphing of their glyphs.

Abstract

Flow fields are often represented by a set of static arrows

to illustrate scientific vulgarization, documentary film,

meteorology, etc. This simple schematic representation

lets an observer intuitively interpret the main properties

of a flow: its orientation and velocity magnitude. We pro-

pose to generate dynamic versions of such representations

for 2D unsteady flow fields. Our algorithm smoothly an-

imates arrows along the flow while controlling their den-

sity in the domain over time. Several strategies have been

combined to lower the unavoidable popping artifacts aris-

ing when arrows appear and disappear and to achieve vi-

sually pleasing animations. Disturbing arrow rotations

in low velocity regions are also handled by continuously

morphing arrow glyphs to semi-transparent discs. To sub-

stantiate our method, we provide results for synthetic and

real velocity field datasets.

Introduction

Arrow plots are standard static representations for 2D vec-

tor fields. They are intuitive and thus often used to present

flows mixed with a contextual background image to non-

expert public. The goal of this work is to provide a simple

algorithm that produces clean animated arrow plots for

presentation purpose.

This aim greatly differs from the traditional objective

as evidenced by the most recent 2D vector field visual-

1



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

ization techniques, where the efforts have focused on the

interactive exploration of the data. For the purpose of ex-

ploration, image-based techniques such as flow textures

(LIC and its animated extensions) allow for interactive

visualization of flow details by using every pixels of the

display device to communicate dense information. How-

ever, flow textures present two major drawbacks in our

context: blending them with an additional color map (a

background image or a dynamic field) might greatly dete-

riorate its details, and such representations are quite sen-

sitive to the quality of the display device and cannot be

controlled while broadcasting videos or during a public

presentation. For the purpose of presentation, a sparse set

of moving arrows can easily convey the desired informa-

tion. The arrows do not deteriorate the background infor-

mation (only occlude it temporary), and is robust to low

quality display device.

This work proposes a method producing sparse and

smoothly animated representations of a flow with moving

arrows (Figure 1). We list below the general properties

and constraints such an algorithm should satisfy.

Arrow trajectories: to intuitively convey its dynamic

nature, the arrow trajectories should follow the flow.

Local flow depiction: the arrow shape should depict

the local orientation and velocity magnitude of the flow at

any time.

Uniform domain coverage: the representation should

provide an uncluttered information of the flow every-

where in the domain at any time.

Smooth animations: the arrow movement should be

as smooth as possible to avoid distraction.

We propose an algorithm that generates intuitive arrow

plot animations by advecting and bending arrows over

time while guaranteeing that arrows will not occlude each

other and ensuring a complete coverage of the domain.

Moreover, the method is able to adapt the density of ar-

rows to arbitrary density field.

However, keeping a uniform coverage of the domain

with no occlusion involves inserting new arrows to fill the

empty places and removing some arrows in places that

get too crowded. This necessary insertion and deletion

of arrows introduce strong popping artifacts when they

appear and disappear, deteriorates the smoothness of the

animation. Our algorithm has been designed to minimize

it, both when generating arrows and at rendering time.

The main contributions in this paper are :

• an efficient algorithm that controls the density of ar-

rows and manages their life span while maintaining

low popping artifacts,

• a rendering algorithm that further reduces popping

by both fading arrows in and out, and a morphing

strategy that handles transitions between high and

low velocity regions,

• and experimentations on both real and synthetic

flows to evaluate how much the (unavoidable) pop-

ping artifacts can be maintained acceptable for visu-

alization purposes.

The rest of the paper is organized as follows: after re-

viewing the state of the art, our arrow representation is

introduced (Section 1), the arrow generation algorithm is

provided (Section 2), the capacity to adapt the arrow den-

sity to any density field is explained (Section 3), the ren-

dering method is presented (Section 4), and results are

presented (Section 5) and discussed (Section 6).

Related work

Most of the recent work on visualizing 2D vector field

have targeted the ability for scientists to interactively ex-

plore their flow datasets. This task is very efficiently

achieved with texture-based techniques [9] which offer a

dense representation of the fine details of a vector field.

They are inexpensive to compute and can produce smooth

animations of unsteady flows. However, when combined

with a background image, these texture-based represen-

tations sometimes fail in displaying both the fine details

of the flow and the background (see Section 6.3 and Fig-

ure 11). In the context of presenting flow behavior in

an animated way to non-expert public, simpler and more

schematic alternatives are more attractive.

Numerous such geometric based flow visualization

methods were invented over the two last decades [12]. We

focus below on the techniques closely related to visualiza-

tion of a flow field by animated geometric primitives.

Vector plots: The simplest vector field visualization

method consists in drawing straight segments originat-

ing from the nodes of an underlying mesh [2] (Possibly

a Cartesien grid) to indicate the local flow direction and

possibly its orientation by placing an arrow tip at its other

2



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

end. Its magnitude might be conveyed by the segment

length. The main drawback comes from the origin of ar-

rows being unable to change over time, leading to occlu-

sions [8] and confusing animations when the vector field

is a flow.

Arrow placement: In flow visualization, clutter and

occlusion problems have been mainly addressed in the

context of streamline placement methods. These algo-

rithms apply here since an arrow can be carried by a

small streamline (streamlet) to better depict the local flow.

Any of these numerous methods [18, 6, 13, 10] can be

used since they guarantee that no streamlet will be placed

within a distance dsep to its neighbours. It is also pos-

sible to adapt the streamline density [16]. An animated

streamline placement has been proposed by Jobard and

Lefer [7]. This later work renders the streamlines with

an animated texture that looks like particle trails advected

along the streamline. Restricting these particle trails to

be aligned on streamlines makes it impossible to avdect

them in the flow, and constrains all particles of a stream-

line to be born and die together. Moreover, the lifetime of

streamlines is more sensitive to flow evolution e.g. a flow

with constant rotation in time will create spinning arrows

with our algorithm whereas streamlines would have very

short lifetime.

Other methods have been proposed to nicely distribute

glyphs. Hiller et al. [5] minimizes Lloyd’s energy to

evenly distribute glyph’s positions and other works aim

to place a minimal number of glyphs [17, 11] to repre-

sent the flow. However, these works do not extend nicely

to unsteady flows. An error diffusion approach has been

proposed [3] to distribute glyphs in unsteady flows, but

it exhibits both high popping and the distribution is not

convincing.

Particle tracing: The dynamics of the flow can be re-

vealed by visualizing particles advected in the domain.

Contrary to arrows, the small size of particle glyphs min-

imizes the occlusion problems. Inter particle distances

has not to be checked and the density is mainly controlled

by the seeding strategy. Bauer et al. use tiles of Sobol

quasi-random positions to regularly seed particles in re-

gion of interest of unsteady 3D flows [1]. Since they deal

with incompressible flows, the initially constant density

of injected particles remains constant during the advec-

tion process. Following the same framework, Helgeland

and Elboth [4] enhanced the rendering with anisotropic

diffusion to better represent the flow. It is even possible

to represent particules with arrows that are advected by

the flow [19]. However, arrows will suffer shearing and

could only be used when the support is given by a pathlet

i.e. advecting a streamlet do not produce a streamlet at the

new frame.

Our algorithm better covers the domain and avoids ar-

row overlaps thanks to more complex creation and dele-

tion strategies, including backward propagation. Some-

how, it requires relaxing the realtime feature of particle

tracing.

1 Moving arrow representation

During the animation, the arrows are represented with

glyphs mapped on rectangular supports. The supports

are warped according to the local flow orientation and

magitude. Each arrow is initiated from a so-called han-

dle point and its support is then warped according to a

short streamline integrated backward and forward from

the handle point (see figure 2). The integration length of

the streamlets is such that their length is proportional to

the local velocity magnitude of the flow.

Figure 2: Arrow Anatomy. An arrow glyph is mapped on

a rectangular support of a given thickness warped along a

streamlet integrated from a central handle point.

More formally, given a 2D time-dependent vector field

v(x, t) = (vx,vy), a streamline S is a parametric curve S(τ)
defined at time t and initiated from an handle point p. S(τ)
is given by the equation:

dS

dτ
= v(S(τ), t) with S(0) = p

The streamlets have a constant integration length L and

3



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

any sample point of the streamlet S is given by:

S(l) = S(0)+
∫ l

0
v(S(τ), t)dτ with l ∈ [−

L

2
,

L

2
]

A standard Runge-Kutta integration scheme is used to

sample the streamlets backward and forward from their

handle point.

To prevent having severely distorted arrows in high ve-

locity regions, streamlets might be clamped if the support

aspect ratio (arrow length over thickness) becomes supe-

rior to a given user threshold.

To intuitively convey the dynamics of the flow, it is

preferable for the arrows to be transported along the flow.

Since their shape is determined at any time step by the

streamlet integration, only the handle point is advected

from one step to the next. This particular point follows a

pathline trajectory P initiated from a seed point ps at time

ts:
dP

dt
= v(P(t), t) with P(ts) = ps

An arrow will then move along this trajectory between

its birth time tb and its death time td (tb ≤ ts ≤ td). Both

tb and td are determined by the arrow reaching the bound-

aries of the space-time domain or by a lack of empty space

requiered to place its support as discussed in the following

section.

2 Uniform placement of moving ar-

rows

To uniformly place moving arrows over the domain, our

algorithm successively fills each time step with as many

arrows as possible such that a minimal ”separating” dis-

tance dsep is respected between arrows. The dsep parame-

ter controls the tradeoff between the competing objectives

of avoiding cluttering and covering the whole domain.

Animation frames are populated with arrows by the Al-

gorithm 1, which consists in three stages.

• S1. The first stage fills the first time step with

evenly-spaced arrows (see Section 2.1 and the red

arrows in Figure 3).

• S2. The second stage iterates over the time steps.

First, the arrows that can be propagated from the

previous time step are inserted into the current one

(see Section 2.2 and the orange arrows in Figure 3).

Second, the current time step is completed with new

arrows inserted in the previous stage (see the red ar-

rows in Figure 3, bottom).

• S3. The third stage iterates from the last time step to

the first one, and advances arrow’s birth when possi-

ble, thus increasing arrow’s lifetime (see the “back-

ward” paragraph in Section 2.2 and the green arrows

in Figure 3).

Algorithm 1: PlaceMovingArrows

Output: arrows // set of arrows

Data : tmax // max vector field time step
S

1 CompleteTimeStepWithArrows (0, arrows);
S

2

for time← 1 to tmax do

∆t ← 1; // forward advection

PropagateArrowsOneStep (time, ∆t, ar-

rows);

CompleteTimeStepWithArrows (time, ar-

rows);

S
3

for time← tmax − 1 downTo 0 do

∆t ←−1; // backward advection

PropagateArrowsOneStep (time, ∆t, ar-

rows);

The two next sections explain how individual anima-

tion frames are populated with new arrows (see Sec-

tion 2.1) and how these arrows will be propagated to first

populate the next time step (see Section 2.2).

2.1 Completing a time step with evenly-

spaced arrows

Evenly distributing arrows over a 2D domain could be ad-

dressed by Lloyd’s relaxation [5]. However, in the dy-

namic case, it is sufficient to use a faster algorithm as the

distribution quality will decrease rapidly due to arrow dis-

placements. Therefore the problem can be reduced here

to the well studied placement of streamlets. We imple-

mented a quite standard greedy approach that works as

follows (see Algorithm 2): from a sufficiently dense sam-

pling of the domain, streamlets are successively integrated

4



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

Figure 3: First and second time step of an animation.

(Top) The empty domain is first filled with dseed-separated

arrows (red). (Bottom) The arrows from the previous time

step are propagated into the current one (orange) and new

arrows are inserted. (Right to left) Then empty spaces are

filled with backward propagated arrows (green) from fu-

ture time steps. The semi-transparent arrow on the right

image is removed to preserve the minimal separating dis-

tance.

from these sample positions and are inserted into the rep-

resentation if their distance to already placed streamlets is

superior to a seeding distance dseed (with dseed > dsep as

explained in Section 2.1.2).

Algorithm 2 requires evaluation of distance between a

new candidate arrow and the previously placed arrows

(Section 2.1.1), and a seeding strategy that determines

Algorithm 2: CompleteTimeStepWithArrows

Input : time // current time step

In/Out : arrows // set of arrows

Data : dseed // seeding distance

Fill a vector seedPositions with domain sampling

positions;

foreach position ∈ seedPositions do
newArrow← CreateArrow (position, time);

if Distance (newArrow, arrows, time)> dseed

then
arrows.Insert (newArrow);

where to place candidate arrows (Section 2.1.2) and when

to stop trying.

2.1.1 Evaluating the distance between arrows

The distance between arrows is approximated by the min-

imal distance between their streamlets. In our implemen-

tation, the distance from any point of the domain to the

existing arrows is stored in a discretized distance map,

which is filled with a fast marching algorithm. The dis-

tance requests are then fast to process since they only re-

quire accessing the distance map at the requested loca-

tions. The distance map resolution is defined with respect

to dsep as illustrated in Figure 6. This approach also re-

mains efficient in the presence of adaptive arrow density

(see Section 3.2).

2.1.2 Choosing where to seed the arrows

The purpose of the seeding strategy is to cover the whole

domain with arrows as close as possible to the maximum

authorized density. A simple solution is to create a shuf-

fled list of positions in a Cartesian grid, and always select

the next position in the list.

In Algorithm 2 the arrow density is controlled by the

parameter dseed , which would be equal to dsep for static

representations. Since arrows will be propagated to the

next step (see Section 2.2), we introduce a security dis-

tance by taking dseed > dsep. This way, individual arrows

have a higher probability to be propagated more steps

ahead before their distance to surrounding arrows falls

under the dsep threshold. We observe that setting dseed =

5



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

2dsep leads to satisfying results. The ratio dseed/dsep man-

ages the tradeoff between the arrows life-time and the uni-

form domain coverage.

2.2 Arrow propagation to the next step

For each time step t, new arrows are iteratively introduced

by Algorithm 2 but first, it is tested if it is possible to

increase the life span of the arrows that exist at time step

t−1 (forward) or t +1 (backward) with Algorithm 3.

During the forward stage, arrows evolve through ad-

vection (of its handle point) and may enter into con-

flict with one another. Therefore, some arrows are to be

deleted and the choice is made by a greedy approach: all

arrows alive at time t − 1 are taken in a heuristic order

and propagated one by one to time t. If an arrows con-

flicts with already propagated arrows, it is discarded. This

method is fast and allows to favor arrows by defining pri-

ority criteria. In practice, sorting arrows by decreasing

streamlet length in screen space allows to keep long ar-

rows as much as possible, and therefore minimizes the

popping artifacts. The benefits of this strategy are illus-

trated in Figure 4.

Figure 4: Arrow propagation with priority. Giving pri-

ority to short arrows (left) would kill long arrows and

therefore waste a lot of space and create noticeable pop-

ping artifacts. Our strategy to propagate long arrows first

(right) resolves this issue by removing small arrows.

The backward stage is similar to the forward one, ex-

cept that it does not try to introduce new arrows because

the empty spaces have already been filled during the for-

ward stage. However, since the arrows have been seeded

at least at the dseed distance to the surrounding ones, some

of these arrows might find enough place to propagate back

until they reach the dsep separating distance. These cases

are illustrated with the green arrows on Figure 3.

To obtain progessive appearance and disappearance of

the arrows along the borders of the frame, it is necessary

to extend the domain with a buffer zone where the vector

field is extrapolated. The size of this hidden buffer zone

is related to half the maximal length of the arrows. All the

operations are performed on this extended domain.

Algorithm 3: PropagateArrowsOneStep

Input : time // current time step

Input : ∆t // 1 is forward, -1 is backward

In/Out : arrows // set of arrows

Data : vf // velocity vector field

Data : dsep // separating distance

prevTime← time − ∆t;

growingCandidates← /0; // empty list

foreach arrow ∈ arrows do
if arrow.IsAlive (prevTime)

and not arrow.IsAlive (time) then
growingCandidates.Insert (arrow);

SortByPriority (growingCandidates);

foreach arrow ∈ growingCandidates do
arrow.PropagateTo (time);

if Distance (arrow, arrows, time)< dsep then
arrow.RemoveTimeStep (time);

3 Introducing an adaptive density

of arrows

The algorithm defined in the previous section computes

a sparse set of moving arrows that keeps a uniform den-

sity over time. However, it is often interesting to adapt

the density of arrows to the local features of the flow (see

Figure 5). This can be done by introducing a density map

which measures the scale at which the phenomenon needs

to be captured.

The density map is a scalar field that gives the local

”zoom factor” of the field: in particular, a value of 1

means that the arrows are generated as with the previ-

ous algorithm, and in general a value scale means that

the algorithm generates arrows as such that a close-up (of

factor scale) of the region gives the same appearance as

the previous algorithm. We first discuss possible ways

to automatically define the density map, then present the

modifications of the algorithm required to add this feature.

6



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

Figure 5: Uniform vs. adaptive density of arrows.

(Left) A uniform density of arrows will fail at revealing

the turbulent areas if the separating distance is too high –

or would overpopulate the domain with a small separat-

ing distance. (Right) Adapting the separating distance to

a density field (green to red background) will adapt the

number of arrows necessary for depicting the details of

the flow.

3.1 Choice of a density map

The density map can be used to add more details

where the flow has more variations. It is therefore

natural to estimate it by a differential quantity derived

from the vector field. In our experiments, we esti-

mate it by the Frobenius norm of the Jacobian matrix

i.e.
√

(∂vx/∂x)2 +(∂vx/∂y)2 +(∂vy/∂x)2 +(∂vy/∂y)2,

at the position x,y with the velocity field v(vx,vy). This

quantity allows to focus on flow features as it is corre-

lated with both divergence and curl. However, other den-

sity maps may be more appropriate in particular cases,

such as the velocity or vorticity magnitude as discussed in

Schlemmer et al.’s work [16]. Regardless the way for es-

timating the density map, its values are set in the range

[1,scalemax] so that some regions can exhibit an arrow

placement scalemax times denser than others. Most fre-

quently we set scalemax ≤ 10.

3.2 Adapting the algorithm to handle a den-

sity map

The only thing we need to change in Algorithm 1 in or-

der to take the density map into account is the distance

between arrows: the new distance is just scaled by the

density. When comparing this new distance with dsep and

dseed in the algorithm, the spacing between neighboring

arrows becomes proportional to the inverse of the density.

Figure 6: Resolution of the distance map. Setting the

pixel width to be a quarter of dsep achieves a good trade-

off between the update time of the distance map and its

accuracy.

The new distance is therefore the weigthed distance

with respect to the density. A weigthed distance is for-

maly defined in [14], and is commonly used in images

applications such as image segmentation [15].

As introduced in section 2.1.1 the distance of each point

to previously placed arrows is stored in a distance map.

The distance map is now considered as a weighted graph

where each pixel is connected to its 8 closest neighbors

and the weights corresponds to the edge length (1 or
√

2

for diagonals) times the density map evaluated at this po-

sition. The distance between two points (pixels) is then

the cost of the shortest path in this graph.

Evaluating the distance to a new arrow from all pre-

viously placed arrows only requires reading the distance

map at the sampling points of the new arrow.

Updating the distance map is a bit more difficult. It

first requires to be initialized to ∞, then for each new in-

serted arrow, the distance field is updated by a n-seed Di-

jkstra algorithm (placing one seed for each point touched

by a rasterization of the arrow’s streamlet). The very spe-

cific nature of the graph (bounded weights between 1 and√
2× scalemax) makes it possible to use simpler and more

efficient algorithms such as [20].

As illustrated in Figure 6, setting the pixel size of the

distance map to be a quarter of the separating distance is

enough to discretize the distance map.

4 Rendering arrows

To draw all the arrows, the rendering algorithm deter-

mines the mapping of the arrow glyph onto the screen

7



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

(Section 4.1), morphs the arrows to new symbols when the

flow magnitude becomes too low (Section 4.3), and adds

transparency to reduce the popping artifacts (Section 4.2).

4.1 Arrow mapping

The glyphs are centered on the handle point of the arrows.

Our algorithm precomputes these positions at each time

step. For frames in-between time steps, the smoothness of

arrow displacements is ensured by a cubic hermite inter-

polation (in time) of the handle point. From the interpo-

lated handle points, a streamlet is integrated and a support

is computed by thickenning it. For adaptive density, the

thickness of the support is divided by the local density to

avoid occlusion with closest arrows.

Notice that it would be possible to integrate (in time)

the handle point position with Runge–Kutta, but we pre-

fer to interpolate them due to the asymmetry of the inte-

gration scheme.

4.2 Fade-in and fade-out of arrows

Popping effects come generally from the insertion and

deletion of arrows. To attenuate this effect, the arrows

are rendered with an opacity coefficient that smoothly de-

creases near birth and death time steps. When the num-

ber of rendering frames is higher than the simulation time

step, all arrows born (resp. died) at time t have the same

transparency coefficient, leading to a visual artifact. This

can be solved by adding a random delay (shorter than a

time step) before applying the fading effect.

4.3 Arrow morphing

Arrows are standard symbols to represent flows, however

it may become misleading where the flow magnitude be-

comes too low. Inspired by meteorologists, we decided to

draw discs to indicate calm regions.

Figure 7: Glyph morphing sequence. The arrows are

smoothly morphed to discs in regions of low velocity.

To render dynamic flows, a smooth transition between

arrows and discs (see Figure 7) allows the avoidance of

distracting symbol switches. The glyph to use is deter-

mined by the streamlet length over glyph thickness ratio:

this ensures that arrows length is always greater than ar-

rows thickness.

The support of the glyph also requires a special treat-

ment when its streamlet is shorter than the arrows thick-

ness: the support is no longer obtained by thickening the

streamlet, but by drawing a square centered on the han-

dle point and oriented by the vector between the streamlet

extremities.

Using a symbol with rotational invariance (disc) pre-

vents the user from being distracted by the frequent rota-

tions when the flow velocity is almost null.

5 Results

Real datas

We have tested our method on a water flow (gulf of Mex-

ico), two winds data (Europe’s Storm in 1999 and Ocean

winds) and a simulated velocity jet. Snapshots of the re-

sulting animations can be found in Figure 8, and videos

in the accompagning material. We tried to reflect the ca-

pabilities of our method. The image of the 1999 Europe’s

storm shows coarse structure of the cyclone, the arrows

morph smoothly between zones with high and low ve-

locity. The flow in the Gulf of Mexico and the veloc-

ity jet have well established currents as well as plenty of

small turbulencies. To avoid overpopulation with plenty

of small arrows, we used high variation of underlying den-

sities and thus we capture tiny details while the well es-

tablished flows are shown with longer and thicker arrows.

Synthetic data

The real data come from simulated or acquired flow fields,

and they have a limited divergence (due to the limited

compressibility of the fluids). As a consequence, the be-

havior of our method in extreme cases of divergence can

not be observed on such data, so we rely on synthetic

fields to evaluate the limitation of our method. Even in

such cases, our algorithm is able to evenly distribute ar-

rows in the field, as illustrated in Figure 9.

8



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

Figure 8: Frames of animated arrow plots of different datasets.

Timings

The table below shows the time necessary to pre-compute

various animations used in this paper.

Dataset processing frames vector field

(seconds) resolution

Storm dec 1999 4.1 48 385×325

Ocean winds, 1987 56.7 40 1440×628

Velocity jet 45.5 500 128×256

Gulf of Mexico 19.25 183 352×320

Dipole 0.29 40 64×64

6 Discussion

6.1 Accuracy and resolution

As stated in the introduction, a sparse set of arrows cannot

represent all details of the flow. To avoid high frequencies

from perturbing the algorithm, it is convenient to filter the

data. A convolution with a Gaussian having the minimal

arrow size as standard deviation is sufficient to maintain

undistorted arrows. As a consequence, sampling the flow

with a resolution higher than one pixel corresponding to

9



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

Figure 9: Stress tests with synthetic vector fields having

extreme divergence.

the minimal arrow size is not useful for the algorithm.

The time resolution of the flow do not impact the result

quality as long as the distance between neighbor arrows

at each time step is a fair approximation of this distance

between two consecutive time steps. In practice, the dis-

placement of an arrow handle point between two frames

should not be greater than the arrow length.

6.2 Streamlets vs. pathlets

As mentioned in the section 1, the arrow shapes follow

streamlines, while their centers move on pathlines. This

means that the arrows in the visualization can point into

different directions than the arrows move to. It may seem

more natural to use pathlets for arrow support. On the

positive side, arrows move into the direction they point

to. On the negative side, pathlets show history of the un-

derlying field and not the current state of the flow.

In the case of steady flows or short arrows, using

streamlet or pathlet is almost equivalent. In other cases,

using pathlines creates confusing effects as illustrated in

Figure 10. Thus, we choose streamlets to carry arrows in

our animations.

6.3 Comparison

As stated in the introduction, our objective is to produce

pleasing and easy to understand animations to represent a

2D flow field. As illustrated here with flow textures and

fixed position arrows, previous methods only partially sat-

isfy these constraints.

Fixed position arrows (see top middle image of fig-

ure 11) can overlap and their alignement can be distract-

Figure 10: Arrows as pathlets or streamlets. Both im-

ages represent the same vortex moving from bottom to

top. The arrows are bended along (Left) pathlets and

(Right) streamlets. Green hollow arrows show the field at

timestep t− 4, red arrows at timestep t. Visually, the an-

imation of streamlet-based arrows is more intuitive than

pathlet-based one.

ing. It is a fair solution to visualize fields in a realtime

context, or for vector fields where advection would be

meaningless such as electromagnetic fields that are not

flows. However, our algorithm offers a more uniform cov-

erage and a natural displacement of the arrows.

Flow texture methods cannot represent flow orienta-

tion and its magnitude without deteriorating global ren-

dering quality. It is also difficult to combine it with other

sources of information such as a detailed background as

illustrated in figure 11.

Moreover, texture based methods may suffer from bad

rendering device (gamma or resolution) and video com-

pression. Our method does not provide an as accurate

representation of the flow details, but does not suffer from

these drawbacks.

Acknowledgments

We wish to thank MeteoSwiss for the dataset of the winds

over Europe, the Center for Ocean-Atmospheric Predic-

tion Studies (COAPS) for the dataset of the ocean cur-

rents in the Gulf of Mexico, Remote Sensing System for

the dataset of the winds around the world and Christoph

Garth at UCDAVIS for the dataset of the high velocity jet.

10



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

Figure 11: Visualizing a flow with a background image. Top row, left-to-right: Flow texture, bent arrows on a

uniform grid and with our method. Compared to flow textures, arrows temporary occlude the background but do not

deteriorate it. Bottom row, left images: arrow plots are less sensitive to the display resolution; two right images:

certain anisotropic textures such as aerial photographies interfere with flow textures.

Conclusion

We have developed a representation of dynamic vector

fields by moving arrows. Despite the intuition that the di-

vergence will always create incessant popping effects, we

were able to produce convincing videos. It was acheived

by coupling arrow generation and rendering strategies.

Moreover, the extreme cases of divergence (source, sink)

that first come to mind as counter-examples that could

challenge our method are correctly handled by our algo-

rithm and are not likely to occur often in real flows.

References

[1] D. Bauer, R. Peikert, M. Sato, and M. Sick. A

case study in selective visualization of unsteady 3D

flow. In Proceedings of the conference on Visual-

ization’02, pages 525–528. IEEE Computer Society,

2002.

[2] D. Dovey. Vector plots for irregular grids. In Pro-

ceedings of the 6th conference on Visualization’95,

page 248. IEEE Computer Society, 1995.

[3] A. Hausner. Animated visualization of time-varying

2D flows using error diffusion. In Proceedings of the

working conference on Advanced visual interfaces,

pages 436–439. ACM, 2006.

[4] A. Helgeland and T. Elboth. High-quality and inter-

active animations of 3d time-varying vector fields.

Visualization and Computer Graphics, IEEE Trans-

actions on, 12(6):1535–1546, 2006.

[5] S. Hiller, H. Hellwig, and O. Deussen. Beyond

stippling—methods for distributing objects on the

11



B. Jobard, N. Ray and D. Sokolov Visualizing 2D Flows with Animated Arrow Plots

plane. In Computer Graphics Forum, volume 22,

pages 515–522. Wiley Online Library, 2003.

[6] B. Jobard and W. Lefer. Creating evenly-spaced

streamlines of arbitrary density. Visualization in Sci-

entific Computing, 97:43–56, 1997.

[7] B. Jobard and W. Lefer. Unsteady flow visualiza-

tion by animating Evenly-Spaced streamlines. In

Computer Graphics Forum, volume 19, pages 31–

39. Wiley Online Library, 2000.

[8] R. V Klassen and S. J Harrington. Shadowed hedge-

hogs: A technique for visualizing 2D slices of 3D

vector fields. In Proceedings of the 2nd conference

on Visualization’91, pages 148–153. IEEE Com-

puter Society Press, 1991.

[9] R. S Laramee, H. Hauser, H. Doleisch, B. Vrolijk,

F. H Post, and D. Weiskopf. The state of the art in

flow visualization: Dense and Texture-Based tech-

niques. In Computer Graphics Forum, volume 23,

pages 203–221. Wiley Online Library, 2004.

[10] Z. Liu, R. Moorhead, and J. Groner. An ad-

vanced evenly-spaced streamline placement algo-

rithm. IEEE Transactions on Visualization and

Computer Graphics, pages 965–972, 2006.

[11] A. McKenzie, S. V Lombeyda, and M. Desbrun.

Vector field analysis and visualization through varia-

tional clustering. In Eurographics-IEEE VGTC Sym-

posium on Visualization, volume 2005, 2005.

[12] T. McLoughlin, R. S Laramee, R. Peikert, F. H Post,

and M. Chen. Over two decades of integration

based, geometric flow visualization. In Computer

Graphics Forum, volume 29, pages 1807–1829. Wi-

ley Online Library, 2010.

[13] A. Mebarki, P. Alliez, and O. Devillers. Farthest

point seeding for efficient placement of streamlines.

In Visualization, 2005. VIS 05. IEEE, pages 479–

486. IEEE, 2005.

[14] F. Mémoli and G. Sapiro. Fast computation of

weighted distance functions and geodesics on im-

plicit hyper-surfaces. Journal of Computational

Physics, 173(2):730–764, 2001.

[15] A. Protiere and G. Sapiro. Interactive image seg-

mentation via adaptive weighted distances. Im-

age Processing, IEEE Transactions on, 16(4):1046–

1057, 2007.

[16] M. Schlemmer, I. Hotz, B. Hamann, F. Morr, and

H. Hagen. Priority streamlines: A context-based vi-

sualization of flow fields. In Eurographics/IEEE-

VGTC Symposium on Visualization, page 227–234.

Citeseer, 2007.

[17] A. Telea and J. J Van Wijk. Simplified representation

of vector fields. In Visualization’99. Proceedings,

pages 35–507. IEEE, 1999.

[18] G. Turk and D. Banks. Image-guided streamline

placement. In Proceedings of the 23rd annual con-

ference on Computer graphics and interactive tech-

niques, pages 453–460. ACM, 1996.

[19] J. J Van Wijk. Image based flow visualization. In

ACM Transactions on Graphics (TOG), volume 21,

pages 745–754. ACM, 2002.

[20] L. Yatziv, A. Bartesaghi, and G. Sapiro. O (N)

implementation of the fast marching algorithm.

Journal of Computational Physics, 212(2):393–399,

2006.

12


